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Abstract— A low-code platform is a software 

development environment that allows for the creation 
of applications through graphical user interfaces and 
configuration instead of traditional hand-coded 
computer programming. In this study, the application to 
classify a dataset of traffic sign images using the 
KNIME low-code deep learning development platform 
will be discussed to represents this software 
performance especial in term of model optimization 
processes. By creates the workflow to perform image 
preprocessing, create the CNN layer under KERAS 
sequential API and finding the best set of key 
hyperparameters among traditional KNIME build-in 
optimization algorithm including Brute force, Hill 
climbing, random search, Bayesian Optimization and 
black-box optimizer Optuna optimization algorithm 
under 3 types CNN architecture as simple CNN, 
Resnet-50 and VGG16 to classify traffic sign images. 
The result demonstrates that both grid search and 
random search optimization can be effective, while 
both Optuna and Bayesian optimization stands out as a 
powerful method due to its ability to efficiently explore 
the hyperparameter space and achieve superior results 
to meet 99% accuracy under simple CNN environment, 
but Optuna is significantly improve optimization times 
than Bayesian about 7 - 8 times. The KNIME low-code 
platform provides a user-friendly environment for 
developing and fine-tuning models to contribute the 
ongoing progress in machine learning and deep 
learning research development. 

Keywords – KNIME low code platform , Convolution 

neural network(CNN),  Keras and TensorFlow API, 

Optuna,  Hyperparameter Optimization. 

I.  INTRODUCTION  

Deep learning optimization has recently seen 

significant advancements, with various methods 

emerging to enhance model performance. One 

prominent approach involves the optimization of 

training algorithms by adjusting hyperparameters like 

batch size, epochs, etc. The traditional tools such as 

Optuna, Bayesian Optimization, etc are commonly 

employed for this purpose. However, improving model 

accuracy through optimization alone is not always 

guaranteed, as the underlying issue may reside within 

the algorithm's architecture itself. Consequently, it is 

essential to adapt and optimize the algorithm to suit 

each specific dataset. Moreover, making optimization 

tools more accessible and user-friendly can 

significantly reduce the barrier of coding skills, 

thereby democratizing the deep learning field and 

fostering broader participation and innovation. In this 

context, the use of low-code platforms, which 

researcher explores the potential of the KNIME 

(Konstanz Information Miner) low-code platform, a 

widely used open-source tool for data analysis and data 

science with extensive extensions and integrations. We 

aim to evaluate the usability and effectiveness of 

KNIME in the domain of deep learning optimization. 

  To validate this approach, we selected traffic sign 

image datasets as the case study for image processing 

tasks. Convolutional neural networks (CNNs) were 

employed to enable accurate classification. Our 

research encompasses two key aspects of deep learning 

optimization: first, the design of a novel algorithm 

tailored specifically for the selected datasets; and 

second, the comparison with existing architectures, 

such as ResNet-50 and VGG-16, to assess the benefits 

of structural optimization, various traditional 

optimization technique with utilizing ADADELTA 

and SGD optimizers. A notable contribution of this 

work is the implementation of Optuna within KNIME, 

introducing a new approach to algorithm optimization 

within a low-code environment. The evaluation results 

indicate that the combination of Optuna and Bayesian 

Optimization applied to the customized architecture 

achieved a remarkable 99% accuracy. Despite yielding 

similar results, Optuna demonstrated superior time 

efficiency and performance compared to Bayesian 

methods, largely due to its seamless integration as a 

KNIME node. Many studies that deployed traffic sign 

image recognition have been done on the application 

of CNN[1],[2] and [3]. All of them have varied various 

CNN structures,  to perform training algorithm 
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hyperparameters tuning with traditional optimization 

techniques such as Bayesian optimization, Optuna 

optimization, etc. The results achieve the average 

accuracy scores > 99%.  

In summary, we present a novel integration of 

Optuna within KNIME, offering an alternative method 

for performance evaluation and customize algorithm 

design for structural optimization. We demonstrate and 

reveal that KNIME enables effective structural 

optimization of algorithms, addressing a gap in 

existing low-code tools and provides a user-friendly 

environment equipped with a variety of tools for 

training algorithm optimization, promoting 

accessibility in the deep learning field. 

II. RESEARCH METHODOLOGY 

A. Traffic sign dataset and CNN Implementation 

In this study, the two categories of traffic sign 

dataset selection for speed limit 100km/h and speed 

limit 120km/h (2730 images for 100km/h and 2670 

images for 120km/h) from totally 42 categories are 

shared from KAGGLE. The original image is a color 

JPEG - RGB image with dimensions of 32 x 32 pixels. 

Researcher use KNIME for image data preprocessing, 

feature engineering, and data visualization, and then 

pass the prepared data to a deep learning framework 

that run under KNIME node for model training and 

evaluation. With a abundant of useful deep learning 

algorithm nodes, model optimization tools, and low-

coded properties, it assists developers in significantly 

reducing development times. When comparing KNIME 

with other low-code platform software such as 

RapidMiner, Alteryx, SAS, etc [4]. KNIME has pricing 

flexibility, a standalone user could use it for free, and 

there are no limits to the software's performance.  

The researcher create KNIME workflow and adjust 

KNIME node properties to easier change the relevant 

parameters and finding the best set of key 

hyperparameters that associated with training process 

improvement as learning rate, batch size, number of 

epochs and 2 optimizer; ADADELTA and Stochastic 

Gradient Descent (SGD) to compare performance of 3 

types CNN as simple CNN, Resnet-50 and VGG16 to 

classify traffic sign images. 

The first stage of CNN implementation with 

KNIME workflow involves data preprocessing to read 

the image file and decode each image file name for 

classification group labeling (Supervised Learning) 

and data partitioning, which is used to divide image 

data into two groups. The first image group separation 

accounts for approximately 70% of the total image for 

model training by linear sampling while the remaining 

image is used for model testing.  

The second stage is CNN deep learning model 

training/testing process as example in Fig.1. 

 

Fig. 1. Model training/testing KNIME workflow  

The DL Python Network Creator node is used to 
create convolution base layer and dense layer by the 
KERAS Sequential API. The KERAS Network Learner 
node is used to train the created CNN from DL Python 
Network Creator node. The CNN layer architecture that 
use in this study are simple CNN , the standard Resnet-
50 and the standard VGG16 that are often used in 
computer vision or image analysis applications such as 
image classification, object detection, face recognition, 
etc. In the last 2 nodes of this stage, we use DL Network 
Executor to test the acquired model by using the second 
group of partitioned image that was partitioned in the 
first stage and a model writer node is used to record the 
training model to keep in a local drive for future 
implementation.  

The last stage is about the model evaluation. The 
KNIME scorer node is used to represent the confusion 
matrix and calculate accuracy of prediction output. It is 
a deep learning evaluation metric that assesses the 
predictive skill of a model by an overall performance 
due to the accuracy computes how many times a model 
made a correct prediction across the entire dataset, 
which remains valid if the dataset is class-balanced 
(refers to 2730 images for 100km/h and 2670 images 
for 120km/h in Section A).  

B. CNN hyperparameter tuning with KNIME node 

Hyperparameters are parameters whose values are 

set before the training process begins. Some key 

hyperparameters directly associated with CNN 

architecture such as number of convolutional layers, 

number of filters/kernels, filter/kernel Size, pooling 

type and size, activation function, etc. In additional, 

some key hyperparameters associated with training 

process improvement such as learning rate, batch size, 

number of epochs, dropout rate, optimizer, Weight 

Initialization, etc. Hyperparameter optimization is 

represented in equations (1) as. 

 

      𝑥∗ =
arg min 𝑓(𝑥)

𝑥 ∈ 𝑋
                       (1) 

 
f(x) represents an objective score to minimize such 

as F1 score evaluated on the validation set, the equation 
(1) is the set of hyperparameters that return the lowest 
value of the scoring and x can take on any value in the 
domain X. The Fig.2. as below show hyperparameters 
optimization workflow in this study. 



 
Fig.2. KNIME parameter optimization workflow  

Bayesian Optimization builds a surrogate model of 
the objective function and uses it to decide where to 
sample next. It is an efficient in terms of the number of 
evaluations needed, especially in high-dimensional 
search spaces. But it requires careful tuning of its own 
hyperparameters and may not perform well with noisy 
objective functions. So, the goal of Bayesian 
optimization is to find the global optimum of the 
objective function with as few evaluations as possible. 
A surrogate model (usually a Gaussian Process) is used 
to model the unknown objective function. This model 
provides a probabilistic estimate of the true objective 
function and is updated as more data points become 
available. Common Surrogate function used to model is 
the Gaussian Process (GP). Here in the Gaussian 
Process is described in detail. 

𝑓[𝑥]~𝐺𝑃[𝑚[𝑥], 𝑘[𝑥, 𝑥′]]           (2) 
Which, 

      𝐸[𝑓[𝑥]] − 𝑚[𝑥]                      (3) 
Given, 

                   𝑓 = [𝑓[𝑥1], 𝑓[𝑥2], … , 𝑓[𝑥𝑡]]                      (4) 

at t points, the objective is to make prediction about 
the function value at a new point x*. This new function 
value 𝑓∗ = 𝑓[𝑥∗] is jointly normally distributed with 
the observations 𝑓 so that. 

         𝑃𝑟 ([
𝑓
𝑓∗]) = 𝑁𝑜𝑟𝑚 [0, [

𝐾[𝑋, 𝑋] 𝐾[𝑋, 𝑥∗]

𝐾[𝑥∗, 𝑋] 𝐾[𝑥∗, 𝑥∗]
]]             (5) 

Where, 

K[X ,X] is a t x t matrix and element (i,j) is given 
by k[xi, xj], K[X, X*] is a t x 1 vector where element i 
is given by k[xi, x*] and so on. Since the values of the 
function in equation (5) are normal, the conditional 
distribution must be normal also, and the standard 
formula for the mean and variance of this conditional 
distribution becomes. 

                        𝑃𝑟(𝑓∗|𝑓) = 𝑁𝑜𝑟𝑚[µ[𝑥∗], 𝜎2[𝑥∗]]                (6) 
Where, 

µ[𝑥∗] = 𝐾[𝑥∗, 𝑋][𝐾[𝑋, 𝑋]]
−1

𝑓  and 𝜎2[𝑥∗] = 𝐾[𝑥∗, 𝑥∗] −

 𝐾[𝑥∗, 𝑋][𝐾[𝑋, 𝑋]]
−1

𝐾[𝑋, 𝑥∗]                                             (7) 

Using equation (6), the distribution of the function 
at any new point x* can be estimated. The best estimate 
of the function value is given by the mean µ[x] and the 
uncertainty is given by the variance σ2[x]. 

An acquisition function is used to determine the 
next point to evaluate in optimization process. It 

balances the trade-off between exploration (sampling in 
regions where uncertainty is high) and exploitation 
(sampling in regions where the surrogate model 
predicts high values). Two typically used acquisition 
functions are the Probability of Improvement (PI) and 
the Expected Improvement (EI). PI measures the 
probability that the objective function value at the 
candidate point is better than the current best-known 
value. In each iteration, PI is maximized to determine 
the next point to evaluate. It encourages exploration by 
favoring points with a high probability of improvement 
over the current best-known value. The formulations of 
common acquisition functions, Upper Bound 
Confidence, Probability of Improvement and Expected 
Improvement are defined as equation (8,9,10) in 
respective below. 

                          𝑈𝐶𝐵[𝑥∗] = µ[𝑥∗] + 𝛽1/2𝜎[𝑥∗]           (8) 

                𝑃𝐼[𝑥∗] = ∫ 𝑁𝑜𝑟𝑚𝑓[𝑥∗][µ[𝑥∗], 𝜎[𝑥∗]]𝑑𝑓[𝑥∗]
∞

𝑓[𝑥]
       (9) 

                          𝐸𝐼[𝑥∗] = ∫ (𝑓[𝑥∗] − 𝑓[𝑥]) 𝑃𝐼
∞

𝑓[𝑥]
              (10) 

Optuna is define-by-run paradigm optimization tool 
that allows the user to dynamically construct the search 
space with efficient sampling and pruning algorithm 
that allows some user customization. It needs an 
objective function to decides where to sample in 
upcoming trials, and returns numerical values (the 
performance of the hyperparameters). Optuna uses Tree 
Parzen Estimator (TPE) by default to the efficient 
sampling or select the set of hyper-parameters   to be 
tried next, based on the history of experiments. Optuna 
also provides another sampling strategy such as  
Covariance-Matrix Adaptation Evolution Strategy 
(CMA-ES) to dynamically constructs the search space 
by updating the mean and variance of hyper-
parameters. For k hyper-parameters, after N 
experiments, it use the best, say, 15% of the trials (best 
here is decided according to the metric of interest – 
accuracy). Optuna calculate the mean and covariance 
matrix of the joint distribution of these hyper-
parameters. when estimating the covariance matrix, it 
use the mean of the previous generation (set of trials) 
instead of the mean estimated for this generation using 
previous trials as equation (11 - 15) as follow. 

µ𝑥
(𝑔+1)

=
1

𝑁𝑏𝑒𝑠𝑡
∑ 𝑥𝑖

𝑁𝑏𝑒𝑠𝑡
𝑖=1           (11) 

µ𝑦
(𝑔+1)

=
1

𝑁𝑏𝑒𝑠𝑡
∑ 𝑦𝑖

𝑁𝑏𝑒𝑠𝑡
𝑖=1                       (12) 

          𝜎𝑥
2,(𝑔+1)

=
1

𝑁𝑏𝑒𝑠𝑡
∑ (𝑥𝑖 − µ𝑥

(𝑔)
)2𝑁𝑏𝑒𝑠𝑡

𝑖=1               (13) 

          𝜎𝑦
2,(𝑔+1)

=
1

𝑁𝑏𝑒𝑠𝑡
∑ (𝑦𝑖 − µ𝑦

(𝑔)
)2𝑁𝑏𝑒𝑠𝑡

𝑖=1               (14) 

             𝜎𝑥𝑦
2,(𝑔+1)

=
1

𝑁𝑏𝑒𝑠𝑡
∑ (𝑥𝑖 − µ𝑥

(𝑔)
)2𝑁𝑏𝑒𝑠𝑡

𝑖=1 (𝑦𝑖 − µ𝑦
(𝑔)

)2          (15) 

Where x is parameter value, y is %loss, µ and σ are 
mean and variance of parameter in respective. Optuna 
saves optimization time with pruning that is a technique 
used in deep learning and searching algorithms to 
reduce the amount of decision trees, by removing some 
non critical branches of the decision tree  that are 



redundant to classify instance.  Optuna pruning will 
automatically stop unpromising trials at the previous 
stages of the training, call automated early-stopping.  If 
an experiment seems unpromising based on some 
intermediate values of loss or other validation metric, 
the experiment is stopped. Optuna uses information 
from the previous experiment to make a decision. It 
asks what is the value of intermediate loss at this epoch, 
and what was the loss of the previous experiments at the 
same stage. 

III. RESULT AND DISCUSSION 

The result demonstrate that both Brute force (grid 
search) and random search can be effective, while 
Optuna and Bayesian optimization stands out as a 
powerful method due to its ability to efficiently explore 
the hyperparameter space and achieve superior results 
to meet 99% accuracy under CPU based and simple 
CNN environment, but Optuna is significantly improve 
optimization times than Bayesian about 7 - 8 times as 
shown in Table.I and Table.II. Additionally, the 
integration of the KNIME low-code platform in traffic 
sign recognition research enables streamlined 
development and optimization of deep learning models. 

Table I. The accuracy and optimization times 

 

 

Table II. The accuracy comparison that obtained 
from KNIME scorer node between each CNN layer 
architecture at before and after applying the important 
hyperparameters. 

 

The comparison result with previous work is shown 
in Table III. The percent accuracy that get from  this 
research when compared with previous works in term 
of accuracy is quite same. Due to, the different in the 
number of convolution layers and the number of dense 
layers in CNN have a direct impact on the system 
accuracy/F1 score for fairly comparison.  

Table III. Previous work comparison result 

 

Table IV. Pros and Cons of KNIME 

 

This research represents the simple CNN that is the 
best design to recognize traffic sign due to researcher 
get the best key hyperparameters as learning rate, batch 
size, etc from this CNN type. Thus, we can’t implement 
those value to the other CNN architecture. It should be 
optimize these hyperparameters by itself.  In addition, 
preprocessing stage improvements such as the image 
filtering technique could be applied to increase the 
accuracy and KNIME already has many image 
preprocessing nodes to support this activity.  The Table 
IV represents Pros and Cons of KNIME software for 
researcher who finding appropriate tool to significantly 
reduce development times in their data science research 
field. Bayesian optimization and Optuna emerges as a 
robust optimization method, while the KNIME low-
code platform provides a user-friendly environment for 
developing and fine-tuning models.  
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