
Performance Evaluation of KNIME

Low Code Platform in Deep Learning Study

and Optimal Hyperparameter Tuning

Pornpawee Thongkhome*, Takuro Yonezawa**, Nobuo Kawaguchi**

*Automotive Engineering - G30 International Program in Electrical, Electronic and Information Engineering

School of Engineering, Nagoya University, Aichi, Japan

**Graduate School of Engineering, Nagoya University, Aichi, Japan

pornpraweeth@gmail.com , takuro@nagoya-u.jp , kawaguti@nagoya-u.jp

Abstract— A low-code platform is a software

development environment that allows for the creation
of applications through graphical user interfaces and
configuration instead of traditional hand-coded
computer programming. In this study, the application to
classify a dataset of traffic sign images using the
KNIME low-code deep learning development platform
will be discussed to represents this software
performance especial in term of model optimization
processes. By creates the workflow to perform image
preprocessing, create the CNN layer under KERAS
sequential API and finding the best set of key
hyperparameters among traditional KNIME build-in
optimization algorithm including Brute force, Hill
climbing, random search, Bayesian Optimization and
black-box optimizer Optuna optimization algorithm
under 3 types CNN architecture as simple CNN,
Resnet-50 and VGG16 to classify traffic sign images.
The result demonstrates that both grid search and
random search optimization can be effective, while
both Optuna and Bayesian optimization stands out as a
powerful method due to its ability to efficiently explore
the hyperparameter space and achieve superior results
to meet 99% accuracy under simple CNN environment,
but Optuna is significantly improve optimization times
than Bayesian about 7 - 8 times. The KNIME low-code
platform provides a user-friendly environment for
developing and fine-tuning models to contribute the
ongoing progress in machine learning and deep
learning research development.

Keywords – KNIME low code platform , Convolution

neural network(CNN), Keras and TensorFlow API,

Optuna, Hyperparameter Optimization.

I. INTRODUCTION

Deep learning optimization has recently seen

significant advancements, with various methods

emerging to enhance model performance. One

prominent approach involves the optimization of

training algorithms by adjusting hyperparameters like

batch size, epochs, etc. The traditional tools such as

Optuna, Bayesian Optimization, etc are commonly

employed for this purpose. However, improving model

accuracy through optimization alone is not always

guaranteed, as the underlying issue may reside within

the algorithm's architecture itself. Consequently, it is

essential to adapt and optimize the algorithm to suit

each specific dataset. Moreover, making optimization

tools more accessible and user-friendly can

significantly reduce the barrier of coding skills,

thereby democratizing the deep learning field and

fostering broader participation and innovation. In this

context, the use of low-code platforms, which

researcher explores the potential of the KNIME

(Konstanz Information Miner) low-code platform, a

widely used open-source tool for data analysis and data

science with extensive extensions and integrations. We

aim to evaluate the usability and effectiveness of

KNIME in the domain of deep learning optimization.

 To validate this approach, we selected traffic sign

image datasets as the case study for image processing

tasks. Convolutional neural networks (CNNs) were

employed to enable accurate classification. Our

research encompasses two key aspects of deep learning

optimization: first, the design of a novel algorithm

tailored specifically for the selected datasets; and

second, the comparison with existing architectures,

such as ResNet-50 and VGG-16, to assess the benefits

of structural optimization, various traditional

optimization technique with utilizing ADADELTA

and SGD optimizers. A notable contribution of this

work is the implementation of Optuna within KNIME,

introducing a new approach to algorithm optimization

within a low-code environment. The evaluation results

indicate that the combination of Optuna and Bayesian

Optimization applied to the customized architecture

achieved a remarkable 99% accuracy. Despite yielding

similar results, Optuna demonstrated superior time

efficiency and performance compared to Bayesian

methods, largely due to its seamless integration as a

KNIME node. Many studies that deployed traffic sign

image recognition have been done on the application

of CNN[1],[2] and [3]. All of them have varied various

CNN structures, to perform training algorithm

mailto:pornpraweeth@gmail.com
mailto:takuro@nagoya-u.jp

hyperparameters tuning with traditional optimization

techniques such as Bayesian optimization, Optuna

optimization, etc. The results achieve the average

accuracy scores > 99%.

In summary, we present a novel integration of

Optuna within KNIME, offering an alternative method

for performance evaluation and customize algorithm

design for structural optimization. We demonstrate and

reveal that KNIME enables effective structural

optimization of algorithms, addressing a gap in

existing low-code tools and provides a user-friendly

environment equipped with a variety of tools for

training algorithm optimization, promoting

accessibility in the deep learning field.

II. RESEARCH METHODOLOGY

A. Traffic sign dataset and CNN Implementation

In this study, the two categories of traffic sign

dataset selection for speed limit 100km/h and speed

limit 120km/h (2730 images for 100km/h and 2670

images for 120km/h) from totally 42 categories are

shared from KAGGLE. The original image is a color

JPEG - RGB image with dimensions of 32 x 32 pixels.

Researcher use KNIME for image data preprocessing,

feature engineering, and data visualization, and then

pass the prepared data to a deep learning framework

that run under KNIME node for model training and

evaluation. With a abundant of useful deep learning

algorithm nodes, model optimization tools, and low-

coded properties, it assists developers in significantly

reducing development times. When comparing KNIME

with other low-code platform software such as

RapidMiner, Alteryx, SAS, etc [4]. KNIME has pricing

flexibility, a standalone user could use it for free, and

there are no limits to the software's performance.

The researcher create KNIME workflow and adjust

KNIME node properties to easier change the relevant

parameters and finding the best set of key

hyperparameters that associated with training process

improvement as learning rate, batch size, number of

epochs and 2 optimizer; ADADELTA and Stochastic

Gradient Descent (SGD) to compare performance of 3

types CNN as simple CNN, Resnet-50 and VGG16 to

classify traffic sign images.

The first stage of CNN implementation with

KNIME workflow involves data preprocessing to read

the image file and decode each image file name for

classification group labeling (Supervised Learning)

and data partitioning, which is used to divide image

data into two groups. The first image group separation

accounts for approximately 70% of the total image for

model training by linear sampling while the remaining

image is used for model testing.

The second stage is CNN deep learning model

training/testing process as example in Fig.1.

Fig. 1. Model training/testing KNIME workflow

The DL Python Network Creator node is used to
create convolution base layer and dense layer by the
KERAS Sequential API. The KERAS Network Learner
node is used to train the created CNN from DL Python
Network Creator node. The CNN layer architecture that
use in this study are simple CNN , the standard Resnet-
50 and the standard VGG16 that are often used in
computer vision or image analysis applications such as
image classification, object detection, face recognition,
etc. In the last 2 nodes of this stage, we use DL Network
Executor to test the acquired model by using the second
group of partitioned image that was partitioned in the
first stage and a model writer node is used to record the
training model to keep in a local drive for future
implementation.

The last stage is about the model evaluation. The
KNIME scorer node is used to represent the confusion
matrix and calculate accuracy of prediction output. It is
a deep learning evaluation metric that assesses the
predictive skill of a model by an overall performance
due to the accuracy computes how many times a model
made a correct prediction across the entire dataset,
which remains valid if the dataset is class-balanced
(refers to 2730 images for 100km/h and 2670 images
for 120km/h in Section A).

B. CNN hyperparameter tuning with KNIME node

Hyperparameters are parameters whose values are

set before the training process begins. Some key

hyperparameters directly associated with CNN

architecture such as number of convolutional layers,

number of filters/kernels, filter/kernel Size, pooling

type and size, activation function, etc. In additional,

some key hyperparameters associated with training

process improvement such as learning rate, batch size,

number of epochs, dropout rate, optimizer, Weight

Initialization, etc. Hyperparameter optimization is

represented in equations (1) as.

 𝑥∗ =
arg min 𝑓(𝑥)

𝑥 ∈ 𝑋
 (1)

f(x) represents an objective score to minimize such

as F1 score evaluated on the validation set, the equation
(1) is the set of hyperparameters that return the lowest
value of the scoring and x can take on any value in the
domain X. The Fig.2. as below show hyperparameters
optimization workflow in this study.

Fig.2. KNIME parameter optimization workflow

Bayesian Optimization builds a surrogate model of
the objective function and uses it to decide where to
sample next. It is an efficient in terms of the number of
evaluations needed, especially in high-dimensional
search spaces. But it requires careful tuning of its own
hyperparameters and may not perform well with noisy
objective functions. So, the goal of Bayesian
optimization is to find the global optimum of the
objective function with as few evaluations as possible.
A surrogate model (usually a Gaussian Process) is used
to model the unknown objective function. This model
provides a probabilistic estimate of the true objective
function and is updated as more data points become
available. Common Surrogate function used to model is
the Gaussian Process (GP). Here in the Gaussian
Process is described in detail.

𝑓[𝑥]~𝐺𝑃[𝑚[𝑥], 𝑘[𝑥, 𝑥′]] (2)
Which,

 𝐸[𝑓[𝑥]] − 𝑚[𝑥] (3)
Given,

 𝑓 = [𝑓[𝑥1], 𝑓[𝑥2], … , 𝑓[𝑥𝑡]] (4)

at t points, the objective is to make prediction about
the function value at a new point x*. This new function
value 𝑓∗ = 𝑓[𝑥∗] is jointly normally distributed with
the observations 𝑓 so that.

 𝑃𝑟 ([
𝑓
𝑓∗]) = 𝑁𝑜𝑟𝑚 [0, [

𝐾[𝑋, 𝑋] 𝐾[𝑋, 𝑥∗]

𝐾[𝑥∗, 𝑋] 𝐾[𝑥∗, 𝑥∗]
]] (5)

Where,

K[X ,X] is a t x t matrix and element (i,j) is given
by k[xi, xj], K[X, X*] is a t x 1 vector where element i
is given by k[xi, x*] and so on. Since the values of the
function in equation (5) are normal, the conditional
distribution must be normal also, and the standard
formula for the mean and variance of this conditional
distribution becomes.

 𝑃𝑟(𝑓∗|𝑓) = 𝑁𝑜𝑟𝑚[µ[𝑥∗], 𝜎2[𝑥∗]] (6)
Where,

µ[𝑥∗] = 𝐾[𝑥∗, 𝑋][𝐾[𝑋, 𝑋]]
−1

𝑓 and 𝜎2[𝑥∗] = 𝐾[𝑥∗, 𝑥∗] −

 𝐾[𝑥∗, 𝑋][𝐾[𝑋, 𝑋]]
−1

𝐾[𝑋, 𝑥∗] (7)

Using equation (6), the distribution of the function
at any new point x* can be estimated. The best estimate
of the function value is given by the mean µ[x] and the
uncertainty is given by the variance σ2[x].

An acquisition function is used to determine the
next point to evaluate in optimization process. It

balances the trade-off between exploration (sampling in
regions where uncertainty is high) and exploitation
(sampling in regions where the surrogate model
predicts high values). Two typically used acquisition
functions are the Probability of Improvement (PI) and
the Expected Improvement (EI). PI measures the
probability that the objective function value at the
candidate point is better than the current best-known
value. In each iteration, PI is maximized to determine
the next point to evaluate. It encourages exploration by
favoring points with a high probability of improvement
over the current best-known value. The formulations of
common acquisition functions, Upper Bound
Confidence, Probability of Improvement and Expected
Improvement are defined as equation (8,9,10) in
respective below.

 𝑈𝐶𝐵[𝑥∗] = µ[𝑥∗] + 𝛽1/2𝜎[𝑥∗] (8)

 𝑃𝐼[𝑥∗] = ∫ 𝑁𝑜𝑟𝑚𝑓[𝑥∗][µ[𝑥∗], 𝜎[𝑥∗]]𝑑𝑓[𝑥∗]
∞

𝑓[𝑥]
 (9)

 𝐸𝐼[𝑥∗] = ∫ (𝑓[𝑥∗] − 𝑓[𝑥]) 𝑃𝐼
∞

𝑓[𝑥]
 (10)

Optuna is define-by-run paradigm optimization tool
that allows the user to dynamically construct the search
space with efficient sampling and pruning algorithm
that allows some user customization. It needs an
objective function to decides where to sample in
upcoming trials, and returns numerical values (the
performance of the hyperparameters). Optuna uses Tree
Parzen Estimator (TPE) by default to the efficient
sampling or select the set of hyper-parameters to be
tried next, based on the history of experiments. Optuna
also provides another sampling strategy such as
Covariance-Matrix Adaptation Evolution Strategy
(CMA-ES) to dynamically constructs the search space
by updating the mean and variance of hyper-
parameters. For k hyper-parameters, after N
experiments, it use the best, say, 15% of the trials (best
here is decided according to the metric of interest –
accuracy). Optuna calculate the mean and covariance
matrix of the joint distribution of these hyper-
parameters. when estimating the covariance matrix, it
use the mean of the previous generation (set of trials)
instead of the mean estimated for this generation using
previous trials as equation (11 - 15) as follow.

µ𝑥
(𝑔+1)

=
1

𝑁𝑏𝑒𝑠𝑡
∑ 𝑥𝑖

𝑁𝑏𝑒𝑠𝑡
𝑖=1 (11)

µ𝑦
(𝑔+1)

=
1

𝑁𝑏𝑒𝑠𝑡
∑ 𝑦𝑖

𝑁𝑏𝑒𝑠𝑡
𝑖=1 (12)

 𝜎𝑥
2,(𝑔+1)

=
1

𝑁𝑏𝑒𝑠𝑡
∑ (𝑥𝑖 − µ𝑥

(𝑔)
)2𝑁𝑏𝑒𝑠𝑡

𝑖=1 (13)

 𝜎𝑦
2,(𝑔+1)

=
1

𝑁𝑏𝑒𝑠𝑡
∑ (𝑦𝑖 − µ𝑦

(𝑔)
)2𝑁𝑏𝑒𝑠𝑡

𝑖=1 (14)

 𝜎𝑥𝑦
2,(𝑔+1)

=
1

𝑁𝑏𝑒𝑠𝑡
∑ (𝑥𝑖 − µ𝑥

(𝑔)
)2𝑁𝑏𝑒𝑠𝑡

𝑖=1 (𝑦𝑖 − µ𝑦
(𝑔)

)2 (15)

Where x is parameter value, y is %loss, µ and σ are
mean and variance of parameter in respective. Optuna
saves optimization time with pruning that is a technique
used in deep learning and searching algorithms to
reduce the amount of decision trees, by removing some
non critical branches of the decision tree that are

redundant to classify instance. Optuna pruning will
automatically stop unpromising trials at the previous
stages of the training, call automated early-stopping. If
an experiment seems unpromising based on some
intermediate values of loss or other validation metric,
the experiment is stopped. Optuna uses information
from the previous experiment to make a decision. It
asks what is the value of intermediate loss at this epoch,
and what was the loss of the previous experiments at the
same stage.

III. RESULT AND DISCUSSION

The result demonstrate that both Brute force (grid
search) and random search can be effective, while
Optuna and Bayesian optimization stands out as a
powerful method due to its ability to efficiently explore
the hyperparameter space and achieve superior results
to meet 99% accuracy under CPU based and simple
CNN environment, but Optuna is significantly improve
optimization times than Bayesian about 7 - 8 times as
shown in Table.I and Table.II. Additionally, the
integration of the KNIME low-code platform in traffic
sign recognition research enables streamlined
development and optimization of deep learning models.

Table I. The accuracy and optimization times

Table II. The accuracy comparison that obtained
from KNIME scorer node between each CNN layer
architecture at before and after applying the important
hyperparameters.

The comparison result with previous work is shown
in Table III. The percent accuracy that get from this
research when compared with previous works in term
of accuracy is quite same. Due to, the different in the
number of convolution layers and the number of dense
layers in CNN have a direct impact on the system
accuracy/F1 score for fairly comparison.

Table III. Previous work comparison result

Table IV. Pros and Cons of KNIME

This research represents the simple CNN that is the
best design to recognize traffic sign due to researcher
get the best key hyperparameters as learning rate, batch
size, etc from this CNN type. Thus, we can’t implement
those value to the other CNN architecture. It should be
optimize these hyperparameters by itself. In addition,
preprocessing stage improvements such as the image
filtering technique could be applied to increase the
accuracy and KNIME already has many image
preprocessing nodes to support this activity. The Table
IV represents Pros and Cons of KNIME software for
researcher who finding appropriate tool to significantly
reduce development times in their data science research
field. Bayesian optimization and Optuna emerges as a
robust optimization method, while the KNIME low-
code platform provides a user-friendly environment for
developing and fine-tuning models.

ACKNOWLEDGEMENT

This research is partially supported by JSPS
KAKENHI 23K24836.

REFFERENCES

[1] W.Yuanzhou and et al., “Research and Implementation of
Traffic Sign Recognition Algorithm Model Based on Machine
Learning”, Journal of Software Engineering and Applications,
Vol.16 No.6, June 2023.

[2] Aumg.Si Thu and et al., “Sequential Model-based Optimization
Approach Deep Learning Model for Classification of Multi-
class Traffic Sign Images”, International Journal of Advanced
Computer Science and Applications (IJACSA), Vol. 14, No. 7,
pp.578 - 583, 2023.

[3] Takuya Akiba and et al.,” Optuna: A Next-generation
Hyperparameter Optimization Framework”, The 25th
International Conference on Knowledge Discovery and Data
Mining(KDD’19), pp.2023,July 2019.

[4] Alteryx vs KNIME vs RapidMiner comparison Report,[Online].
https://www.peerspot.com/products/comparisons/alteryx_vs_k
nime_vs_rapidminer

