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Abstract
Human Mobility Prediction Challenge 2024 was organized to com-
pare human future movement prediction methods using a unified
dataset. The challenge focuses on human movement prediction
in multiple cities with varying numbers of users. Many existing
movement prediction methods train deep learning models using
large-scale movement histories from cities and make predictions.
While cities with large users have sufficient training data, smaller
cities with fewer users may face challenges due to insufficient data,
raising concerns about lower prediction accuracy. Additionally, it is
difficult to treat stay locations between different cities’ movement
histories due to differences in spatial area arrangement, making it
challenging to share data across cities. To address this issue, we pro-
pose human movement prediction method that utilizes time-series
stay frequency patterns, which can be commonly applied across
different cities. This method demonstrated superiority in predicting
movements in cities with fewer users compared to models trained
and predicted using only the movement histories of the target city.
Furthermore, the method achieved top 10 prediction accuracy in
HuMob Challenge 2024.

CCS Concepts
• General and reference → Estimation; Evaluation; • Social and
professional topics→ Geographic characteristics.
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1 Introduction
With the widespread adoption of mobile devices, it has become
possible to collect large-scale location data in urban areas, leading
to active research in urban planning, transportation planning, and
disaster management utilizing such data[1][2][3]. Movement trends
captured from movement histories based on location data provide
clues for predicting users’ future movements.

In many studies on human movement prediction, models are
trained and tested on proprietary location datasets, making it diffi-
cult to compare methods across different studies. To address this,
the Human Mobility Prediction Challenge 2024 (HuMob Challenge
2024) was organized to compare prediction methods using a unified
open dataset[4].

In the challenge, movement history datasets from four cities
were provided, and the task was to predict the 30-minute interval
stay locations for the last 15 days of 3,000 users from each of the
three cities: City B, City C, and City D. The number of users in
each city is 100,000, 25,000, 20,000, and 6,000, respectively, raising
concerns about lower prediction accuracy in cities with fewer users
due to the limited amount of training data. Therefore, it is believed
that leveraging movement trends from cities with more users can
supplement the insufficient information available from cities with
fewer users. However, a key challenge remains the difficulty of
aligning stay locations across users’ movement histories between
different cities.

To address the issue, we propose a human movement prediction
method using time-series stay frequency patterns that are common
across different cities for each user. The time-series stay frequency
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Figure 1: Time-series stay frequency patterns common across different cities

patterns for each user represent abstract stay tendencies without
relying on spatial characteristics specific to each city. As shown in
Figure 1, it is expected that common trends can be observed across
cities based on user attributes.

Two BERT-based models (SF-BERT and CM-BERT) were used
as encoders, and movement prediction was performed using LP-
BERT[5]. SF-BERT (Time-series Stay Frequency BERT) captures
time-series stay frequency patterns common across different cities,
while CM-BERT (City Movement BERT) captures movement trends
specific to each city. The movement histories were encoded using
these two models, and the outputs were used as inputs to LP-BERT.
Evaluation experiments demonstrated that, in cities with fewer
users, the proposed method outperformed models trained and pre-
dicted using only the movement histories of the target city. Further-
more, the method achieved top 10 prediction accuracy in HuMob
Challenge 2024.

2 Related Work
With the ability to collect large-scale location data, research on
human movement prediction has become increasingly active. Since
movement trends are largely dependent on individual users, some
models have been developed based on this concept, creating pre-
dictions for each user [6].

However, individual users’ movement histories vary in the amount
of data available, raising concerns about lower prediction accuracy
for users with less data. In response, research has emerged using
deep learning models such as RNNs and LSTMs to learn and predict
large-scale movement trends of users in urban areas[7, 8].

Since the introduction of Transformer models, many movement
prediction models leveraging the Attention mechanism have ap-
peared. Attention enables the capture of long-term dependencies in
movement histories, leading to improved prediction accuracy [5, 9,
10]. While large cities have sufficient movement histories to train
deep learning models, smaller cities may face challenges due to
insufficient data. Additionally, sharing movement histories across
cities is difficult due to the challenge of aligning stay locations
between different cities.

To supplement the data shortage in individual cities, research has
been conducted on transfer learning for city prediction models [11,
12]. However, these studies are limited to predicting inflow and
outflow volumes on a grid basis and do not address the matching
and prediction of individual trajectories.

City A City B City C City D
Records 111,535,175 24,375,898 18,456,528 8,418,135
Individuals 100,000 25,000 20,000 6,000
Valid mesh 34,032 26,523 9,208 21,113
Target Users 0 3,000 3,000 3,000

Table 1: Datasets Overview

Figure 2: HuMob Challenge Overview

3 HuMob Challenge 2024
3.1 Datasets
Humob Challenge 2024 was organized to compare human move-
ment prediction methods using a unified dataset[13]. The dataset
includes 75 days of 30-minute interval movement histories from
four cities in Japan. The number of records and users for each city
is shown in Table1. The stay locations in the movement histories
are divided into a grid of 500m by 500m, with each city containing
approximately 40,000 grid cells.

3.2 Prediction Tasks
In the HuMob Challenge 2024, the task is to predict the 30-minute
interval stay locations for the last 15 days for 3,000 individuals from
each of the three cities—City B, City C, and City D—included in
the dataset like in Figure 2. For training, the movement histories
from days 0 to 74 of non-target users in each city, as well as the
movement histories from days 0 to 59 of the target users, can be
used.

3.3 Evaluation Metrics
The prediction performance is evaluated using two metrics, both of
which take into account the spatial distance between the predictions
and the ground truth.
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Figure 3: Overview of SF-BERT and CM-BERT pretraining

Day of Week weekday
weekend

Time Segments 0 - 11 or 42 - 47
12 - 17
18 - 35
36 - 41

Visit Frequency 40% - 100%
20% - 40%
10% - 20%
0% - 10%

Table 2: Time-series Stay Frequency

– GEOBLEU[14]
GEOBLEU is an evaluation metric inspired by BLEU, which is
used in the field of natural language processing. It is designed to
evaluate local prediction accuracy, with higher values indicating
better scores. If the prediction results and the actual results match
perfectly, the value will be 1.

– DTW[15]
DTW is a metric used to evaluate the similarity between the
predicted trajectory and the actual trajectory over time. Lower
values indicate better scores, and if the predicted trajectory and
the actual trajectory match perfectly, the value will be 0.

4 Method
An overview of the training process for the SF-BERT and CM-BERT
models used as encoders is shown in Figure 3. Additionally, the
overall framework of the proposed method is shown in Figure 5

4.1 Time-series Stay Frequency
Time-series stay frequency refers to the visit frequency of each user
to specific stay areas for each time segment. The time segments
and stay frequency categories are shown in Table 2. Additionally,
since the calculation is performed separately for weekdays and
weekends, the time-series stay frequency is divided into 32 classes.
It is expected that similar trends will emerge among users with
similar attributes across different cities. For example, areas where
students frequently stay during the daytime are likely to be schools,
and areas where they frequently stay at night are likely to be their
homes.

Figure 4: Datasets for SF-BERT and CM-BERT training

4.2 Time-Series Stay Frequency BERT
(SF-BERT)

To learn time-series stay frequency patterns that are common across
different cities, a dataset is created by mixing the movement histo-
ries of users from multiple cities. For each user, 1,024 consecutive
movements and 1,024 randomly extracted time-series movement
trajectories are used as training data like shown in Figure 4. It is ex-
pected that consecutive movements capture short-term movement
trends, while random extractions capture long-term movement
trends.

The structure of the model is shown in Figure 3. The input to
the model consists of stay frequency classes, date, time, day of the
week, and time differences between stays. During training, the stay
frequency classes for 100 consecutive movements are masked, and
the model is tasked with predicting the masked stay frequency
classes. Cross-entropy is used as the loss function.

By using SF-BERT as an encoder, predictions can consider time-
series stay frequency patterns learned from large-scale movement
histories across multiple cities. This approach is expected to sup-
plement the missing movement trends in cities with insufficient
training data.

4.3 City Movement BERT (CM-BERT)
To learn the movement trends of each city, the movement histories
of each city’s users are used as training data. For each user, 1,024
consecutive movements and 1,024 randomly extracted time-series
movement trajectories are used as training data like Figure 4.

The structure of the model is shown in Figure 3. The input to
the model consists of location, date, time, day of the week, time
differences between stays, and stay frequency classes. CM-BERT
does not use user information as input, allowing it to learn general
movement trends for each city. During training, the locations and
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Figure 5: Overview of proposed method

stay frequency classes for 100 consecutive movements are masked,
and the model is tasked with predicting the masked locations. Cross-
entropy is used as the loss function.

4.4 Location Prediction
For movement prediction, two pre-trained models are used as en-
coders. During the training of LP-BERT, the parameters of the
pre-trained models are not updated. The input consists of the entire
movement history for each user, with each movement containing
location, date, time, day of the week, time differences between stays,
and time-series stay frequency class.

As shown in Figure 5, movement history is fed into each encoder,
and the vectors output for each stay are summed. This sum is then
added to the embedding of the location, which serves as the input
for LP-BERT.

During training, the locations and stay frequency class for 15
consecutive days of movements are masked in each batch, and
the model is tasked with predicting the masked locations. Cross-
entropy is used as the loss function.

5 Experiment
5.1 Validation
An evaluation experiment was conducted to demonstrate the effec-
tiveness of time-series stay frequency. The results of the compara-
tive experiments are shown in Table 3. Five different input patterns
to LP-BERT were compared.

• Embed
• SF-BERT + Embed
• SF-BERT + CM-BERT
• SF-BERT + CM-BERT + Embed
• SF-BERT + CM-BERT + Embed(Only Location)

The breakdown of the datasets for each city is shown in Table 5.
The embedding size was set to 128 dimensions, and the batch size
was set to 8 for City B and City C, and 4 for City D. Training was

conducted for 400 epochs for each model. In Table 3, the best score
for each city is highlighted in red, while the second-best score is
highlighted in blue. The evaluation experiment results indicated
that the best scores were achieved when using SF-BERT and CM-
BERT as encoders and combining their output vectors with the
location embeddings as the input to LP-BERT.

5.2 Parameter Tuning
We performed batch size tuning for the proposed model. The results
are shown in Table 4. As a result, the final parameters were set with
a batch size of 16 for City B and 8 for the remaining cities, City C
and City D.

6 Conclusion and Future Work
In the Humob Challenge 2024, we proposed movement prediction
method using time-series stay frequency patterns common across
different cities. The method employed SF-BERT, trained on time-
series stay frequency patterns using the movement histories of
multiple cities, and CM-BERT, trained on the movement trends of
individual cities, as encoders, with location prediction performed
by LP-BERT. The proposed method demonstrated superiority in
predicting movements in cities with fewer users compared to mod-
els trained and predicted using only the movement histories of a
single city. In the future, we aim to compare multiple deep learning
models as prediction models to find the optimal one and further
improve prediction accuracy.
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