
Composite Image Generation Using Labeled Segments
for Pattern-Rich Dataset without Unannotated Target
Kazuma Kano
Nagoya University
Nagoya, Japan

kazuma@ucl.nuee.nagoya-u.ac.jp

Yuki Mori
Nagoya University
Nagoya, Japan

ymori@ucl.nuee.nagoya-u.ac.jp

Keisuke Higashiura
Nagoya University
Nagoya, Japan

urachan@ucl.nuee.nagoya-u.ac.jp

Tahera Hossain
Nagoya University
Nagoya, Japan

tahera@ucl.nuee.nagoya-u.ac.jp

Shin Katayama
Nagoya University
Nagoya, Japan

shinsan@ucl.nuee.nagoya-u.ac.jp

Kenta Urano
Nagoya University
Nagoya, Japan

urano@nagoya-u.jp

Takuro Yonezawa
Nagoya University
Nagoya, Japan

takuro@nagoya-u.jp

Nobuo Kawaguchi
Nagoya University
Nagoya, Japan

kawaguti@nagoya-u.jp

Abstract
Although object detection technology using cameras offers poten-
tial for various applications, it incurs dataset creation costs to train
new models where general-purpose models are ineffective, such
as in industrial settings. We have previously developed a semi-
automated annotation framework that employs optical flow and
representation learning techniques to reduce human effort signif-
icantly. However, it was likely to cause unintended annotation
omissions and mistakes compared to manual annotation. In this
study, we propose a composite image generation approach to create
omission-free and pattern-rich datasets. The proposed method syn-
thesizes natural-looking images without unannotated targets by
placing labeled foreground segments at their original positions on
targetless background frames collected with the same fixed-point
cameras. Evaluation with video footage in a logistics warehouse
confirmed that improved dataset reliability led to higher model
performance.

CCS Concepts
• Computing methodologies→ Image processing; Object de-
tection.
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1 Introduction
Cameras are installed everywhere and used for various purposes,
such as security and healthcare. With the recent aging population,
they also hold promise for applications in work analysis for pro-
ductivity improvement at industrial sites [17]. Object detection, a
common task in computer vision, helps digitize valuable informa-
tion regarding locations and status. Many current object detection
technologies are based on deep learning and have achieved high
accuracy. People can readily benefit from these technologies using
publicly available pre-trained models, e.g., SSD [10], Faster R-CNN
[12], DETR [1], and YOLO. Nevertheless, these general-purpose
models may not be robust enough for specialized situations like
industrial settings. For example, logistics warehouses have diverse
items and unique equipment, such as hand pallets, whichmay be un-
familiar to the models. Additionally, although mounting wide-angle
cameras at vantage points can prevent tall objects from screening
the targets and cover extensive areas with fewer devices, views
from right above or distorted are not generally anticipated. In this
case, it is necessary to prepare datasets for fine-tuning and transfer
learning, and the annotation costs hinder putting the systems into
practice.

Various studies have been conducted to reduce the costs, such as
effectively training models with less data and partially automating
annotation tasks through computer assistance. We have previously
developed a semi-automated annotation framework that extracts
moving objects by optical flow, encodes them with representation
learning, and groups similar ones by clustering [8]. It dramatically
reduced human effort by setting bounding boxes automatically
and labeling many objects together. However, it was prone to un-
intended annotation omissions compared to manually because it
could not annotate objects stationary or not successfully grouped,
which may impair the training processes.
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Figure 1: Composite Image Generation Using Labeled Image Segments.

Therefore, this study proposes a composite image generation ap-
proach to create omission-free and pattern-rich datasets, extending
the framework with minor additional efforts. Figure 1 illustrates
the concept of the proposed method. It picks frames without detec-
tion targets from candidate frames provided by optical flow. Then,
it pastes image segments labeled with the framework onto the
frames to synthesize fully annotated images. Here, we collect the
frames and segments with the same fixed-point cameras and place
the segments in their original positions and orientations to align
the contexts of foregrounds and backgrounds. We created datasets
with annotations of warehouse workers using video footage from
wide-angle cameras on the ceiling and evaluated the performance
of detection models trained with them. The result demonstrated
that ridding datasets of unannotated targets improved the model
performance by over 5 [%], and the proposed method achieved
competitive accuracy with manual annotation at under a quarter
of the cost.

2 Related Work
2.1 Active Learning
Previous studies have addressed the annotation cost problem in var-
ied ways. Active learning is an approach where models initiatively
select effective data points and prioritize annotating them. Yang et
al. utilized similarity and uncertainty information provided by Fully
Convolutional Network (FCN) to determine the most representative
and unexplored data [16]. Yoo et al. attached a small parametric
module to the network and predicted the losses for unlabeled in-
puts, i.e., how likely to go wrong [18]. Choi et al. used Mixture
Density Network (MDN) for object detection to estimate aleatoric
and epistemic uncertainty on localization and classification in a
single forward pass [3]. These studies have enabled high accuracy

with fewer data but still require considerable amounts, demanding
further cost reductions.

2.2 Annotation Automation
Some studies reduced human effort by automating portions of anno-
tation tasks. Lu et al. introduced self-supervised contrastive learning
to train models partially with unannotated data [11]. They achieved
high accuracy in lung nodule malignancy and attribute prediction
with hundreds of samples and slight annotations. Elangovan et al.
employed machine learning techniques to automate subtasks in
the annotation process and created a dataset including over 10000
kitchen activities labeled with 24 attributes [6]. Nevertheless, these
methods depend on specific domains and are difficult to apply di-
rectly to environments like multi-product warehouses. We have
tackled generic semi-automated annotation for object detection of
mobile classes, including humans, robots, and anything they carry
[8]. It significantly reduced the costs for large-quantity annotation
but had challenges of annotation omissions and mistakes.

2.3 Data Augmentation with Image Synthesis
Image synthesis is sometimes employed to simulate hard-to-obtain
data or enrich on-hand data. Sakaridis et al. created foggy scene im-
ages by overlaying synthetic fog on real clear-weather scenes based
on depth information [13]. On the other hand, Dwibedi et al. pasted
object image segments onto scene images to generate augmented
similar scenes, blending with several modes to make models ig-
nore the pixel artifacts [5]. However, they assumed access to object
images with modest backgrounds from multiple viewpoints; it is
costly to collect those of practical targets, such as workers with
various postures seen in the operations. In addition, they randomly
placed the foreground segments on the background images, which
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results in unnaturalness, especially when using distorted images
from wide-angle cameras. Even though some studies estimated
the semantic and geometric contexts with dedicated models to ar-
range the segments appropriately [4, 7], it could be difficult for
complicated environments.

3 Methodology
3.1 System Overview
So far, we have developed a semi-automated annotation framework
for mobile objects [8]. In this study, we apply image synthesis to the
framework to eliminate unannotated targets and ensure data vari-
ety. Figure 2 outlines the procedure of the proposed method. The
blue and orange steps stand for autonomous and human-involved,
respectively. Step 1 segments objects based on the magnitude of the
pixel motions computed by RAFT, a dense optical flow method with
deep learning [14]. Step 2 encodes the segments into fixed-length
vectors with a SimSiam model, a self-supervised representation
learning method with Siamese-like network architecture [2]. We
preliminary trained the model so that it encoded similar objects
closely. Step 3 clusters the vectors by K-Means. Step 4 labels the
grouped similar objects in bulk. Step 5 picks frames without target
objects from candidate frames where RAFT did not detect motion.
Step 6 synthesizes annotated images by placing the labeled seg-
ments on the targetless frames.

Optical flow

Encoding

Videos from fixed-point cameras

Image segments
of moving objects

Clustering

Embedding vectors

①

②

③

Grouped objects

Labeled image segments

Annotated composite images

Labeling④

Synthesis⑥

Targetless frames

Unlabeled objects

Stationary objects

No-motion frames

Labeling⑤

Figure 2: Procedure for Dataset Creation.

This study follows the previous work for steps 1 to 4 and appends
steps 5 and 6. The previous method can fail to annotate in two
ways: overlooking stationary objects at step 1 and not labeling mis-
grouped objects at step 4. The proposed method uses only labeled
objects to create images without unannotated detection targets. It
also allows for intentionally excluding poorly segmented objects,
refining the quality of bounding boxes in the datasets. This method

is applicable to object detection with fixed-point cameras for any
mobile class. We defer the detailed explanation for steps 1 to 4 to
the previous paper and focus on steps 5 and 6 in this chapter.

3.2 Targetless Frame Preparation
Background images without detection targets are necessary to en-
sure no unannotated targets in synthesized images. We utilize the
motion information provided by RAFT to find the targetless im-
ages efficiently, assuming that the targets tend to move. The pro-
posed method gathers targetless frames from randomly sampled
frames where RAFT did not detect motion. Irrelevant objects in
these frames are desirable for data diversity. In this step, humans
need to check some frames for every camera, yet there are far
lighter workloads than manual annotation. The more frames you
prepare, the more diverse the generated images, but the higher the
effort.

3.3 Composite Image Generation
We generate fully annotated composite images using the labeled
image segments and targetless frames following Algorithm 1. The
input consists of labeled segments 𝑺 , targetless frames 𝑭 , mean
𝜇 and standard deviation 𝜎 of the number of used segments per
composite image, and iteration count 𝐶 . The output is composite
images 𝑰 . Each segment will be used 𝐶 times on average. Equation
(1) gives the expected proportion 𝑝 of the segments used at least
once, where 𝑁 is the number of the segments.

𝑝 = 1 −
(
1 − 𝜇

𝑁

)𝑅𝑜𝑢𝑛𝑑 (𝐶𝑁
𝜇

)
(1)

Algorithm 1: Composite Image Generation
Data: Labeled image segments 𝑺 of length 𝑁 , targetless

frames 𝑭 of length𝑀 , mean 𝜇 and standard deviation
𝜎 of # of objects per image, and iteration count 𝐶 .

Result: Composite images 𝑰 of length 𝑅𝑜𝑢𝑛𝑑

(
𝐶𝑁
𝜇

)
.

begin
for 𝑖 ∈ 𝑰 do

𝑠𝑒𝑡 ←− {}
𝑛𝑢𝑚 ←− 𝑅𝑜𝑢𝑛𝑑 (𝐺𝑎𝑢𝑠𝑠 (𝜇, 𝜎))
while 𝐿𝑒𝑛(𝑠𝑒𝑡) < 𝑛𝑢𝑚 do

𝑠 ←− 𝐶ℎ𝑜𝑖𝑐𝑒 (𝑺)
𝑜𝑣𝑒𝑟𝑙𝑎𝑝 ←− False
for 𝑡 ∈ 𝑠𝑒𝑡 do

if 𝐶ℎ𝑒𝑐𝑘𝑂𝑣𝑒𝑟𝑙𝑎𝑝 (𝑠, 𝑡) then
𝑜𝑣𝑒𝑟𝑙𝑎𝑝 ←− True

if ¬𝑜𝑣𝑒𝑟𝑙𝑎𝑝 then
𝑠𝑒𝑡 ←− 𝑠𝑒𝑡 + {𝑠}

𝑖 ←− 𝐶ℎ𝑜𝑖𝑐𝑒 (𝑭 )
𝑆𝑜𝑟𝑡 (𝑠𝑒𝑡,𝐶𝑒𝑛𝑡𝑟𝑖𝑐𝑖𝑡𝑦)
for 𝑡 ∈ 𝑠𝑒𝑡 do

𝑖 ←− 𝑆𝑦𝑛𝑡ℎ𝑒𝑠𝑖𝑧𝑒 (𝑖, 𝑡)
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First, randomly select a labeled segment. Next, check whether
it overlaps with any other segments already adopted for this time.
Equation (2) determines it based on the area ratio of two bounding
boxes’ intersection to the smaller box, where 𝑅𝑜𝑣𝑒𝑟𝑙𝑎𝑝 represents
the threshold ratio. We set 𝑅𝑜𝑣𝑒𝑟𝑙𝑎𝑝 = 0.25 in this study.

𝐶ℎ𝑒𝑐𝑘𝑂𝑣𝑒𝑟𝑙𝑎𝑝 (𝑠, 𝑡) = 𝐴𝑟𝑒𝑎(𝑠 ∩ 𝑡)
min(𝐴𝑟𝑒𝑎(𝑠), 𝐴𝑟𝑒𝑎(𝑡)) > 𝑅𝑜𝑣𝑒𝑟𝑙𝑎𝑝 (2)

If the segment overlaps with no other segment, adopt it. Repeat
these steps until sampling a random number of segments. Then,
randomly select a targetless frame. Finally, synthesize an image
by pasting the sampled segments onto the frame. Here, place the
segments at their original positions and orientations in order of
distances from the viewpoint to fit the foregrounds into the back-
ground context and simulate depth perception. We calculate dis-
tances from the center of the image instead because the cameras
face right downward in our environment. Iterate the above steps
for each camera to create a dataset.

4 Evaluation
4.1 Dataset Creation
We semi-automatically annotated workers in video footage of a
receiving and shipping floor in a logistics warehouse. We used wide-
angle cameras (H.View HV-800G2A5 1) fixed vertically downward
on the ceiling. We recorded the videos in full HD, 8000 [kbps], and
5 [fps] and undistorted them with Double Sphere camera models
[15]. Here are the labeling guidelines we followed to ensure the
quality of annotations.
• Regard only objects composed of single workers as worker
objects, ignoring ones comprising multiple workers or non-
workers.
• Label only successfully segmented objects, excluding ones
composed of partial bodies or including excessive margins.

As a result, we labeled 4066 objects as workers from 22000 moving
objects over 13709 frames captured by 22 cameras. We also gathered
five targetless frames, i.e., without workers, for each camera.

Then, we created datasets from these data in two ways: our pre-
vious method [8], i.e., just retrieving frames containing the labeled
objects, and the proposed method, i.e., generating composite im-
ages from the labeled image segments and targetless frames. Table
1 presents the hyperparameters for composite image generation in
the proposed method. Figure 3 displays data examples for the same
three cameras; the left is retrieved frames by the previous method,
and the right is composite images by the proposed method. The red
solid rectangles represent actual annotations in the datasets, and
the green dashed ones represent unannotated workers we marked
for clarity. We can see that the previous method had some unan-
notated workers, whereas the proposed method eliminated them.
Although the proposed method sometimes resulted in odd situ-
ations as seen in the top left of the upper image, the generated
images were consistent with the perspective and mostly looked
natural.

Furthermore, we created a dataset with almost the same number
of annotations manually made by two experienced annotators. We
1https://hviewsmart.com/products/h-view-colorcam-4k-bullet-ai-camera-with-
color-night-vision-hv-800g2a5

Table 1: Hyperparameters for Composite Image Generation

Mean of # of objects per image 𝜇 2
Standard deviation of # of objects per image 𝜎 0.5

Iteration count 𝐶 2

also prepared another manually annotated dataset for the test. Ta-
ble 2 summarizes the number of annotations and images in these
datasets and the time spent on labeling and annotation by hand. The
high number of annotations and images in the proposed method
was due to the twofold augmentation of the original annotations.
Meanwhile, the number of images in the previous semi-automated
method was higher than in manual annotation owing to annota-
tion omissions. Human work times in the proposed and previous
method were under a quarter of manual annotation. Note that Table
2 does not include time to gather the targetless frames and execute
the automatic processes.

Table 2: Data Quantities and Work Times

# of Annots # of Images Time [min]

Proposed 8131 4066 94
Semi-automated [8] 4066 3786 94
Manual annotation 4062 1322 432

Test data 863 467 —

4.2 Model Training
To begin with, we split each dataset except the test into training and
validation subsets in an approximate 8 : 2 ratio. The training subsets
were randomly augmented in hue, saturation, brightness, transla-
tion, scale, shear, perspective, and flip. Then, we fine-tuned the
medium-sized pre-trained model of YOLOv8 [9] with each dataset.
This task was a single-class object detection, i.e., the models es-
timated bounding boxes enclosing workers. The batch size and
maximum number of epochs were set to 128 and 300, respectively.
We adopted the weights at the epochs with the best Average Pre-
cisions (AP) on validation subsets, following the default setting of
the official implementation.

4.3 Results and Discussions
Figures 4 and 5 plot precision-recall curves and F1-confidence
curves for the test data. Table 3 presents APs at that time. First of
all, we will consider differences from the previous semi-automated
method [8]. The proposed method outperformed the previous by
over 5 [%] for all three AP metrics. Fully annotated data, a change
from the previous, seemingly contributed to the model performance
improvement. Figure 4 shows a significant drop in recall of the pre-
vious at around 0.85, which should be attributable to unannotated
targets in the training data. The model likely learned to identify as
workers only when particularly confident, increasing false nega-
tives. Incidentally, these two methods exhibited similar trends in
the high-precision range since these datasets originated from the
same annotations.

https://hviewsmart.com/products/h-view-colorcam-4k-bullet-ai-camera-with-color-night-vision-hv-800g2a5
https://hviewsmart.com/products/h-view-colorcam-4k-bullet-ai-camera-with-color-night-vision-hv-800g2a5
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(a) Semi-automated [8] (b) Proposed

Figure 3: Image Examples in Datasets.
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Figure 4: Precision-Recall Curves for Test Data.
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Table 3: Average Precisions for Test Data

AP50 AP75 AP50:95

Proposed 0.81 0.62 0.56
Semi-automated [8] 0.77 0.57 0.53
Manual annotation 0.82 0.64 0.57

Next, we will compare the proposed method with manual anno-
tation and examine rooms for enhancement. The proposed method
approached manual annotation in AP, especially excelling in recall
and F1 score. The lack of negative data in the proposed method
seems to have caused an increase in recall. This experiment focused
on single-class detection, so the dataset of the proposed method,
with its limited backgrounds, did not contain sufficient non-worker
objects. The model may have learned to easily infer as workers,
leading to higher recall at the expense of precision. In fact, pre-
cision hit the ceiling at around 0.9. The proposed method can be
readily applied to multi-class detection. In this case, the classes
act as negative data for each other, which could improve precision.
Also, labeling non-target objects and synthesizing those segments
will enrich background patterns, potentially enhancing precision.

5 Conclusion
This study tackled low-cost and reliable dataset creation for object
detection, anticipating practical scenarios.We proposed a composite
image generation approach using labeled image segments and tar-
getless frames from fixed-point cameras. It enables the production
of various realistic images by pasting the foreground segments at
their original positions and orientations on the background frames.
We extended a semi-automated annotation framework [8] and ad-
dressed the problem of unintended annotation omissions. Then, we
created datasets of warehouse workers and evaluated the model per-
formances trained with them. The result indicated that ridding the
dataset of unannotated targets improved the model performance,
and the proposed method was competitive to even manual anno-
tation with less human effort. We also discussed challenges in the
lack of negative data, which may lead to low precision. Applying
multi-class and labeling non-target objects are possible solutions
for further improvement. This approach to generating composite
images does not rely on our annotation framework and is adaptable
to other techniques and environments. We believe this study will
promote digitalization for higher productivity at industrial sites.
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