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Abstract
This research addresses improvement of the accuracy of
pedestrian dead reckoning (PDR), which is one effective
technique to estimate indoor positions using smartphone
sensors. Even though various techniques using step
lengths and their number have been previously proposed
for PDR, insufficient accuracy is gotten from smartphone
sensors. In this research, we define human activity sensing
knowledge and propose improvements to PDR accuracy
based on it. Human activity sensing knowledge consists of
four kinds of information: pedestrian, environmental,
activity, and terminal. Previous studies separately used
these kinds of information; however, no study has
systematically arranged them for use in PDR. We
improved PDR accuracy by adjusting the step length in
passages and on stairs and revised activity recognition
error with human activity sensing knowledge. To
investigate the effectiveness of that strategy, we used
HASC-IPSC, which is an indoor pedestrian sensing corpus.
After our investigation, activity recognition accuracy
improved from 71.2% to 91.4%, and the distance
estimation error was reduced from approximately 27 m to
approximately 7 m using human activity sensing
knowledge.
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Introduction
Pedestrian dead reckoning (PDR) with acceleration and
gyro sensors is one effective technique to estimate the
indoor positions of people. PDR uses steps, step lengths,
and walking directions to estimate current positions by
the displacement from the immediately previous position.
Even though various techniques have been proposed for it,
their performances using smartphone sensors remain
inadequate.

In this research, we define human activity sensing
knowledge and propose improvements to PDR accuracy
based on it. Human activity sensing knowledge consists of
four kinds of information: pedestrian, environmental,
activity, and terminal. Previous studies used such
information separately [9][7]; no study has systematically
integrated it for PDR. We improved PDR accuracy by
adjusting the step lengths in passages and on stairs and
revising the activity recognition error with human activity
sensing knowledge.

Related Work on PDR
Traditional PDR generally estimates the number of steps,
their length, and the walking direction from acceleration,
gyro, and geomagnetism data [3]. However, this technique

accumulates errors because it estimates the current
position by displacement from the immediately previous
one.

To revise the accumulative error of PDR, techniques using
RFID tags and map matching have been proposed. Anzai
[2] reduced errors by map matching in corners. Positions
are revised when the system determines by geomagnetism
and gyro sensors that a pedestrian turned or changed her
walking direction.

Korogi [12] proposed an RFID positioning system with
map matching to revise pedestrian positions. When an
RFID reader detects a tag with a specific ID, it notifies
the user of the positional information and the detection
time by a network to revise the position. In addition,
movement through floors indoors is limited to stairs and
elevators or escalators. Therefore, with a map, we can
revise the pedestrian position when the system detects an
elevator or escalator.

Previous studies realized position estimation with high
precision using RFID tags and map matching in PDR. But
these techniques need maintenance, management, and
elaborate prior investigation infrastructure and design. If
PDR precision is high, this cost can be cut by reducing
the amount of infrastructure or the labor of preliminary
surveys. Highly precise position estimation with lower cost
is necessary to improve PDR accuracy.

Definition of Human Activity Sensing Knowl-
edge
Such factors as psychological conditions, the clothing
being worn, and weather conditions influence pedestrians
and their walk environments [13]. Among these factors,
pedestrian, environmental, and activity information are



easy to use at low cost and are useful to improve PDR
accuracy. In addition, terminal information using
pedestrian observations is also easy to use at lower cost to
improve PDR accuracy because the sensor precision is
different. Therefore, in this research, we arrange this
information as pedestrian, environmental, activity, and
terminal information and define them as human activity
sensing knowledge.

We also improve PDR accuracy by adjusting the steps in
passages and on stairs to correct the activity recognition
error by human activity sensing knowledge.

We obtain such information by two methods: the
information input by users and the information estimated
by the system. The information input by users is easy to
get without maps or documents; the information
estimated by the system is obtained by machine learning
from sensor data.

Pedestrian Information
We define the physical information and the health
condition of walkers as pedestrian information. The
number of steps and their lengths are affected by many
factors about the walkers, including age, gender, and
psychological conditions [13]. For setting the step lengths
in PDR, the walker’s height is often used. Even though
gender and age also influence the step length [13], we
don’t consider them. Usually, there is no difference of step
length between genders. However, when walking speed
exceeds 130 m/min, the step length is influenced by
gender. The step length is also changed by the walker’s
age. The ratio of the step length by height changes by
age. Walking patterns begin to change for people in their
50s, and step length and pace become shorter in their late
60s. The step length is 45% of the walker’s height when
people are younger than 65 years, although when they are

over 67, it decreases to 40% of the walker’s height [13].
As the walking speed increases, the influence of age
becomes bigger. Gender and age information are not used
very much in PDR, although both are useful for precise
improvement. The existence of obstacles and gait
differences also affect step length and their number. But
using them is difficult because they vary greatly among
people.

Therefore, we concentrate on such physical information as
gender and age and the walker’s health condition.

Environmental Information
We define the outline of the environment and its buildings
as environmental information. Walking is influenced by
the corridor situation and the blockage percentage [13].
Step lengths on stairs or on slopes are different from the
steps in passages. If we have a floor map or detailed
building information, we can reduce the error by map
matching. Map matching is available at low cost if we use
a floor map as an image [11]. Such information as the
congestion degree is also easy to use and is probably
useful for PDR precision improvement. Since easily
available information about pedestrians does not take
time to update, it is available at low cost. In this study,
environmental information includes data that are assumed
to be identical in the same building, such as the ceiling
height and the width of a single step on stairs. But it
doesn’t include data that vary according to places such as
the distance of passages.

Activity Information
We define a kind of action of pedestrians and their
characteristics as activity information. In this definition,
we only focus on activities when they can walk normally.
Pedestrians perform various actions, including stopping,
walking, and going up or down stairs. All actions have



characteristics. We can determine which movements the
walker does based on such characteristics. The frequencies
of the differences among walking, running, and going up
and down stairs are observed. A technique was proposed
that used a power spectrum and a peak appearing in a
frequency band [7]. EE The difference between going up
stairs and walking is observed in the patterns of the gyro
sensor data. The difference between going down stairs
and walking is observed in the differences of the peak
value of the vertical acceleration and the acceleration of
the running direction [11]. Some studies used an
atmospheric pressure sensor to detect going up and down
stairs as well as the number of floors [4]. But few
smartphones are equipped with atmospheric pressure
sensors. Precision is crucial for the information provided
by this identification. If the identification is correct, we
can improve PDR precision using activity information.
But if the identification is not correct, the PDR precision
worsens. When a walker moves, we suppose that she
navigates directly without encountering any obstacles. In
addition, since we assume that she takes the same action
if the walking environment doesnft change, we can use
such information to improve PDR precision.

Terminal Information
We define the kind and the maintenance position of the
sensor terminals as terminal information. Such sensor
terminals as smartphones or private terminals are used in
PDR. They are equipped with the sensors of different
manufacturers, so we assumed that their sensor precision
is different. Iokura pointed out that the sampling intervals
of acceleration sensors are different in each version of an
Android OS, even if the models are identical [6]. Haba
identified a delay in the acquisition of wireless LAN
electric wave information that is different in all available
models [5]. Since such sensor terminals affect PDR

precision, they must be considered for PDR. In addition,
the sensor data greatly differ from every position of a
sensor terminal whose position is important to PDR.
Some studies estimate the sensor terminal’s position [10].
The figures show the sensor data from the following
positions: hand-held (Fig. 1(a)), a pants’ pocket (Fig.
1(b)), and rear middle of the waist (Fig. 1(c)). A
low-pass filter is applied to these data.

In the case of the hand-held and the rear middle of the
waist positions, a rhythm is seen every wavelength. When
carried in a pocket, the rhythm is seen every two
wavelengths because the foot movement affects the sensor
data. In step detection, the norm of acceleration sensor
data is used in many cases. Therefore, we must use an
appropriate detection method for the terminal’s
maintenance site. Various studies estimate sensor terminal
positions with sensor data [10]. If the estimation is
correct, it is available for precision improvement in PDR.
However, wrong estimation increases error.

(a) Hand-held



(b) Pocket

(c) Waist: rear

Figure 1: Sensor data of each position

Evaluation
To confirm the accuracy improvement, we performed
distance estimation and activity recognition with the
human activity sensing knowledge. We investigated the
effectiveness of our proposed technique using HASC-IPSC
[8], which is an indoor sensing corpus. HASC-IPSC
contains the data of 107 men and women whose ages
range from their 20s to their 60s. The data include route
data in buildings and such basic activities such as staying
and walking.

Experiment content
We performed activity recognition and distance estimation
with route data from HASC-IPSC. The activity
recognition was performed with the route data of 107
walkers. We performed the distance estimation with the
data of five walkers from the same route. In this
experiment, we got correct information about the position
of the terminal and the corners. In the activity recognition
and distance estimation, we used the HASC Tool [1].

Figure 2: Route (2D)

Figure 3: Route (3D)



Human activity sensing knowledge
In this experiment, we used the following human action
sensing knowledge.

Pedestrian information
We adjusted the step length by the walker’s height
and age. We assumed that the step length is 45%
of the walker’s height of people who are younger
than 65. When they are over 65, we assumed that
their step length is 40% of their height.

Environmental information
There are 12 steps on the stairs in this building. We
assume that one step length is 0.3 m, and one step
height is 0.15 m. The stairs have a landing, and the
size of the landing is approximately 2 m In addition,
the walker always turns before entering the stairs,
which are perpendicularly placed in the entrance.

Activity information
The actions from a corner to the next corner are the
same because the stairs and the passages are divided
by a corner in this experiment’s route. The walkers
moved linearly from a corner to the next corner.

Terminal information
We used Nexus 4 (OS: Android 4.2) made by LG
Electronics Incorporated and put it at the rear
middle of the waist of the walkers. We used one
wavelength for the step detection.

The table shows the pedestrian information used in our
experiment.

Table 1: Pedestrian information

Height [cm] Age Gender

Person 1207 178 20 Male
Person 1208 171 20 Male
Person 1217 168 30 Male
Person 1234 174 50 Male
Person 1296 147 60 Female

Activity Recognition
We performed activity recognition by the route data of all
the walkers. Since few terminals have atmospheric
pressure sensors, we only used acceleration and angular
velocity sensors. The kind of action was estimated by
machine learning using the characteristics. For them, we
used the maximum, the minimum, the mean, and the
variance of the three axial gyro sensor data and the norm
of the acceleration sensor data. We used a J48 decision
tree of Weka in machine learning and the human action
sensing knowledge for the activity recognition. For the
activity information, we assumed that the walker takes the
same action from one corner to the next one. We
calculated the total time for each action from one corner
to the next and decided the longest time action as the
section’s action. Based on the environmental information,
there is a landing on the building’s stairs. We regarded
the short section between the stairs as a landing. We
improved the precision of our activity recognition using
human activity sensing knowledge. For the learning data,
we used the basic action data of all the walkers included
in HASC-IPSC and show the activity recognition result in
Table 2.



Table 2: Activity recognition rate (%)

Walk Up stairs Down stairs

Walk 88.8 (55.0) 4.6 (22.3) 6.6 (22.7)
Up stairs 1.6 (7.6) 93.5 (81.2) 4.9 (11.2)

Down stairs 7.4 (15.2) 0.7 (5.5) 91.9 (79.3)

The number in the parentheses expresses the activity
identification rate when we did not use the human activity
sensing knowledge. With the activity and environmental
information in the human activity sensing knowledge, we
improved the activity recognition rate. Without the
human activity sensing knowledge, some results identified
walking as going up stairs. Between the stairs, there is a
landing that is shorter than the stairs. Therefore, they
probably affected the recognition result.

Distance Estimation
Using the activity recognition results, we performed
distance estimation. When the walker travels along the
route, she does her usual walk and goes up and down one
step of the stairs. We show the route in Figs. 2 and 3.
The black line shows the passages, and the red line shows
the stairs. The route’s full length is 74.9 m with four
stairs. This route goes from the first to the third floors.

We calculated the distance by multiplying the steps by
their length. We adjusted the step length using the
pedestrian and environmental information. When the
estimated activity is walking, we adjusted the step length
using the pedestrian information. When the estimated
activity is going up or down stairs, we adjusted the step
length using the environmental information.

For step detection, we applied a threshold to the norm of

acceleration sensor data. We show the detection state in
Fig. 4.

Figure 4: Step detection

We set high and low thresholds. When the norm of the
acceleration sensor data is under the low threshold within
about one second after the norm of the acceleration
sensor data exceeds the high threshold, we count it as one
step. In this experiment, we set the high threshold to 1.1
G and the low threshold to 0.95 G. 1G shows the size of
gravity’s acceleration.

Table 3: Distance estimation in stairs

Mean error [m]
Improvement rate [%]

Without knowledge With knowledge

Person 1207 6.1 0.8 86
Person 1208 6.2 0.9 86
Person 1217 4.9 0.8 84
Person 1234 4.0 1.5 63
Person 1296 4.4 0.5 87

We show the result of walking on stairs in Table 3 of the
distance estimation with the environmental information.
The number shows the mean error in four times of
walking up the stairs. We show the error for the route’s
full length in Table 4. This expresses the error of the
horizontal movement distance.



By the environmental information in the human activity
sensing knowledge, we can reduce the error for all the
walkers. The error on the stairs also greatly influenced the
distance estimation. Using this distance estimation
technique, we converted a walker’s position during the
route into coordinates. We show the mean error in Table
5 when we compared it with the correct position every 0.1
seconds. The correct position was derived from the
correct data included in HASC-IPSC.

Although we used the human activity sensing knowledge,
some errors have not been improved yet. Some estimation
accuracy worsened because the route’s stairs are half-turn
stairs. The half-turn stairs refuted the error reduction in
the stairs using the knowledge. The figure shows the error
with the correct position every 0.1 seconds when a walker
moves in the route.

Table 4: Error for complete route length

error [m]
Improvement rate [%]

Without knowledge With knowledge

Person 1207 28.4 4.3 85
Person 1208 42.0 19.5 54
Person 1217 22.6 0.7 97
Person 1234 16.7 5.6 66
Person 1296 23.0 4.6 80

Table 5: Position estimation precision

Mean error [m]
Improvement rate [%]

Without knowledge With knowledge

Person 1207 3.9 3.8 3
Person 1208 4.9 5.5 -12
Person 1217 6.5 6.2 5
Person 1234 2.8 2.9 -4
Person 1296 2.3 3.8 -65

The colored part in the graph is the stairs. Although we
adjusted the step length, errors increased in the stairs
because the cumulative error negatively influenced the
accuracy. In addition, the result of the activity recognition
of Person 1296 was partly wrong. The step length varies
based on places. Differences in recognition increased the
error.

Figure 5: Errors during route

Conclusion
Summary
We defined human activity sensing knowledge to improve
PDR accuracy and proposed obtaining activity recognition
and distance estimation based on it. Human activity
sensing knowledge consists of four kinds of information:



pedestrian, environmental, activity, and terminal. We
evaluated it using route data from HASC-IPSC, tested it,
and confirmed the effectiveness of our proposed technique
for activity recognition and distance estimation. With
human activity sensing knowledge, the accuracy of activity
recognition improved from 71.2% to 91.4%, and the
distance estimation error fell from approximately 27 m to
approximately 7 m. Although we used human activity
sensing knowledge, some errors failed to improve because
the route had multistage half-turn stairs. In addition,
cumulative error influenced it and worsened the precision.
Therefore, improvement of the position estimation
precision when walking through corridors is necessary.

Future work includes the following.

• Improvement of human action sensing knowledge
We defined human activity sensing knowledge in
this study and explained how to use it. However,
because it is thought that there are more
applications which are useful for precise PDR
improvement, further examination is necessary
about the usage of human activity sensing
knowledge.

• Adjustment of step length
Height and age are used for setting the step length.
A step length estimated by that information is the
same as the normal step length. However, since step
length is changed by walking speed and
environment, we must adjust it based on them.

• Improvement of positioning accuracy based on
corner estimation
In our evaluations, we used correct information at
the maintenance position of a corner and a

terminal. However, we must estimate them for real
environments.
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