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Abstract Gate-passing information is useful for daily activity recording. We pro-
pose a gate-passing detection method using WiFi and accelerometer. Since doors
divide such physical areas as rooms and hallways, the WiFi environments tend to
greatly vary. A gate should exist when the points in the WiFi environments are sig-
nificantly different. We define such points as WiFi significant points and propose
a detection method based on a WiFi propagation model and estimated moving dis-
tance according to an accelerometer. We evaluated our proposed method and found
out that most door passings can be detected. We also found that we can estimate
the existence of doors that have identical door passings with a high degree of accu-
racy. Furthermore, we propose a cumulative error correction method of pedestrian
dead-reckoning based on our proposed method as an application.

Key words: Accelerometer, activity recognition, cumulative error correction of
personal dead-reckoning, gate passing detection, signal propagation model, WiFi
significant point

1 Introduction

Gate passings, which refer to the entrances and exits to a building or a room and
going by a corridor, are crucial information for indoor location-based services, es-
pecially for monitoring user activities, recognizing user migration pathways, and
lifelogs.
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Traditional gate-passing detection methods suffer from the following problems.
The most general gate-passing detection method is IC card readers or RF tag read-
ers attached to gates. In such situations, users touch the readers with their cards.
The vision-based approach detects a gate [1]. Its door is extracted from the images
captured by the camera attached to a robot or a user. The restrictions of camera lo-
cations burden general users. Another method uses proximity sensors [2], although
general mobile terminals don’t have them.

In this paper, we propose a gate-passing detection method [3]. We assume that
users have general smartphones. In our method, we use WiFi signal information
for gate detection and estimate the moving distance by accelerometers with which
most smartphones are equipped. WiFi access points (APs) must be placed in the
environment, even though many APs have already been placed in public buildings,
universities, and offices.

The following is the outline of our proposed method. Since WiFi signal strength
tends to be cut off or reduced by such gates as doors, we assume gates in a location
where the WiFi environment greatly varies. To acquire the degree of variation of
WiFi environments, we introduce and compare two kinds of moving distances that
are based on WiFi and accelerometers. If the WiFi-based distance deviate from the
accelerometer-based distance, we assume that the user is passing a gate.

2 Proposed method

Many objects divide spaces, such as doors, elevators, and walls. Such objects tend to
cut off or weaken WiFi signal strength. The degree of decay depends on the object’s
material and the physical relationship between the object and the AP. However, in
many cases, WiFi environments separated by objects tend to be very different.

Figure 1 shows an example where a WiFi environment is different because it is
separated by a door. If the user passes it, the WiFi environment changes. We assume
that if the WiFi environment greatly varies, the user is passing a gate such as a door.

In this paper, we define a location where WiFi environments are separated by
significantly different locations as a WiFi significant point. We assume a situation
where users have standard smartphones and walk around indoors. Our method re-
quires two kinds of moving distances. One is accelerometer-based step estimation,
and the other is the distance based on the variation of WiFi signal strengths and the
signal propagation model. If the latter distance deviate from the former distance, the
method judges that the user has passed a WiFi significant point.

One typical signal propagation model is the Seidel model [4], which represents
the relationship between the distance to an AP and its received signal strength indi-
cation (RSSI). With the model, we can estimate the distance to AP using RSSI.
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2.1 Fundamental algorithm for extracting WiFi significant points

First, we formulate the WiFi significant point extraction algorithm by defining a sim-
ple environment. It has only one AP whose location is unknown. Users walk around
it freely, thus the trajectory is not necessarily linear. From WiFi and accelerometer
information, two kinds of distances are estimated.

One distance is user minimum moving distance dmin that is estimated by the WiFi
information. When RSSI rt1 at time t1 changes to rt2 at time t2, the minimum moving
distance is represented as the following formula using WiFi propagation model f :

dmin = | f (rt1)− f (rt2)|. (1)

Figure 2 shows several possible trajectory examples where RSSI is changed from
-30 to -40 dBm. When the user linearly moves away from the AP, the lengths
of the distance of trajectories must be the shortest. The length is calculated as
| f (−30dBm)− f (−40dBm)|. If the user passed the WiFi significant point, estimated
minimum distance dmin should be larger than the actual walking distance.

The other distance, which is maximum moving distance dmax between times t1
and t2, is estimated by an accelerometer. Walking steps can be extracted by capturing
the periodical local maximum and local minimum values of an accelerometer. Each
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Fig. 3 Fundamental basis
of WiFi significant point
extraction
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step’s distance is estimated using the user’s height and the local maximum and local
minimum values. Here, if the user is walking linearly, the distance is the sum of each
step’s distance. If the user isn’t walking linearly, the distance between the user’s
positions at t1 and t2 must be shorter than the distance of the linear walking. The
sum of the walking distance must be the maximum distance.

Based on dmin and dmax, we estimate whether the user passed the WiFi significant
point during t1 and t2. The algorithm is shown in Fig. 3. If dmax exceeds dmin, the
actual distance range can be estimated (Fig. 3, top). On the other hand, if the WiFi
environment varies significantly during t1 and t2, dmin should be larger than the ac-
tual walking distance, and dmin is probably larger than dmax (Fig. 3, bottom). In such
situations, we judge that value dmin is not reasonable. Consequently, we consider
that the user passed the WiFi significant point during t1 to t2.

2.2 Extending our proposed method for real environments

We introduce the effect of the fluctuation of RSSI and multiple WiFi information
and extend our proposed method for real environments. In the real world, WiFi
signals influence multipath fading so that RSSI is not constant. Using the average or
median RSSI values that are observed multiple times, the effect of fluctuation can be
reduced. We imagine a situation where users aren’t standing, so WiFi RSSI cannot
be observed multiple times. The effect of fluctuation cannot be ignored. At the same
time, we must consider the multiple WiFi information transmitted by multiple APs.
Recently, since many APs have been placed in various buildings, we can receive
multiple AP signals at a number of locations.
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Fig. 4 Conversion from RSSI fluctuation to distance fluctuation. (top: Gaussian distribution of
RSSI, bottom: Gaussian distribution of distance)

2.2.1 Effect of fluctuation of RSSI

First, we introduce the effect of the fluctuation of RSSI and reconstruct our above
scheme as a stochastic model. In this paper, we approximate the fluctuation as a
Gaussian distribution. Several researches adopt Gaussian distribution to approxi-
mate RSSI fluctuation [5, 6]. We also regard the level of fluctuation as constant. In
ideal environments, the distance can be calculated using function f and RSSI rμ ,
and the distance is expressed as f (rμ ). The fluctuation is expressed as a Gaussian
whose average is rμ and the standard deviation is rσ (Fig. 4 top). At the time, in
the ideal environment, when RSSI is observed, distance rμ − rσ can be calculated
as f (rμ )− f (rμ − rσ ). Using the value, we approximate the distance fluctuation to
AP as a Gaussian distribution where the average is wμ = f (rμ) and the standard
deviation is wσ = f (rμ )− f (rμ − rσ ) (Fig. 4 bottom).

Minimum distance dmin, which we introduced above, is expressed as a subtrac-
tion of Gaussian distributions. Consequently, minimum distance dmin is expressed
as a Gaussian whose average is dmin μ = wμ1 −wμ2, and the standard deviation is
dmin σ =

√
wσ1 + wσ2.

In the previous section, the existence probability of WiFi significant points is
expressed as binary. On the other hand, by introducing fluctuation, the likelihood
based on two kinds of distances dmax and dmin are expressed as cumulative proba-
bility (5 shaded area). The likelihood is calculated as Eq. 2. Here, er f (x) is an error
function.

p =
1
2
(1 + er f (

dre f −dμ√
2d2

σ
)) (2)

The top of Fig. 5 is an example where cumulative probability p is high. In short,
the observed RSSI should probably be fluctuated. On the other hand, if p is under
threshold pthreshold (Fig. 5, bottom), the observed RSSI is unlikely even where the
fluctuation is concerned. We assume that a WiFi significant point is passed between
observation times t1, t2.
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Fig. 5 Distance likelihood

Based on the fluctuation, a weak RSSI value should not be used to extract WiFi
significant points. If the RSSI is weak, the estimated distance to the AP is signifi-
cantly different if the RSSI value is fluctuated. For example, using the WiFi propa-
gation model from the evaluation section, the distance where the RSSI is -80 dBm
is 83 m, and the distance where it is -81 dBm is 91 m. The variance is only 1 dBm,
but the difference of the estimated distances is 8 m. Therefore, we use RSSI values
that exceed threshold rthreshold for WiFi significant point extraction.

2.2.2 Multiple APs’ WiFi information

Next, we introduce multiple AP RSSI information. When the user passes a point
where the WiFi environment changes significantly, RSSIs don’t always change si-
multaneously due to the mobile device’s sensitivity and the device driver. Thus, the
time instants that WiFi significant points are observed don’t always match.

To reduce the problem, we aggregate WiFi significant points that come from each
AP’s RSSI as one WiFi significant point.

Based on the previous section, the existence of WiFi significant points from each
RSSI is judged in each observation interval between t and t +1. The WiFi significant
points receive votes for their respective intervals. Then the interval that receives the
most votes in a window, whose size is w, is deemed to be one WiFi significant point.
Fig. 6 shows an example of the voting and the aggregation of WiFi significant points.
The window size is 4. In the example, four zones are voted as WiFi significant point
at first (Fig. 6 top). Then, according to the voting count and window size, they are
aggregated as two zones (Fig. 6 bottom). Finally, these two zones are considered as
WiFi significant point.
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Fig. 6 Voting and aggre-
gation of WiFi significant
points. Top: voting, bottom:
aggregation
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2.3 Identical gate-passing detection and passing direction
estimation

The aggregated WiFi significant points consist of multiple WiFi significant points
from multiple APs’ WiFi information. We believe that identical gate-passing detec-
tion can be realized using the pattern of the AP’s information. The pattern of i-th
WiFi significant point Si is expressed as a vector using the number of votes and
voted BSSIDs b.

Si = [bi,0,bi,1, ...,bi,n] (3)

The similarity of two arbitrary WiFi significant points Si, S j is calculated using
Tanimoto coefficient T [7]:

T =
N(Si ∩S j)

N(Si)+ N(S j)−N(Si∩S j)
. (4)

The Tanimoto coefficient is a similarity metric to evaluate two sets. If they are
completely identical, T is 1. They don’t have a common element, and T is 0. Here,
N(x) is the number of elements in x.

When similarity T exceeds similarity threshold tthreshold , WiFi significant points
Si, S j are estimated to be the same point, and the user is passing the gate again.

Furthermore, we estimated the passing direction using the pattern of the variance
of the RSSIs. For each common BSSID b in Si and S j, we checked the variance
direction to determine whether RSSI increased or decreased. If the variance direc-
tion is the same, Nsame is incremented. If the variance direction is different, Ndi f f is
incremented. If Nsame is larger than Ndi f f , the user passed the gate from the same
direction, and if Ndi f f are larger than Nsame, the user passed the gate from a different
direction.
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2.4 Correction of WiFi significant points using accelerometers

As above, RSSIs don’t always change at the gate-passing moment. Based on our
pilot study, the difference of the RSSI change timing and actual gate-passing timing
is not zero, and the difference may be about ten seconds.

Next we corrected the WiFi significant point with an accelerometer. Generally,
when a person passes a gate, the step interval is long, and each step length is short,
even though the continuing time of the state is not so long. Based on the heuris-
tics, we developed simple gate-passing timing estimation using an accelerometer.
In our method, when the accelerometer’s local maximum and minimal are lower
than threshold gthreshold and the continuing time is lower than wthreshold , we assume
the time zone is a gate passing. Here, gthreshold means threshold of gate-acc and
wthreshold means threshold of gate-passing time.

If the time distance between a WiFi significant point and a gate-passing time is
under window size w, the time of the WiFi significant point is corrected to the gate-
passing time. When multiple WiFi significant points exist within the window, the
nearest WiFi significant point is corrected as the gate-passing time.

Note that our door passing estimation is not very robust. Various situations prob-
ably exist where the estimation is not correct. For example, when the environment
is crowded, people stand or walk slowly for a short time. The method is probably
inaccurate when a person slow down to passes a corridor’s corner.

2.5 Restrictions

Our proposed method is very dependent on the physical relationships between gates
and APs. Thus, not all gate passings can be detected by our method. If there are no
APs around a gate, gate passings cannot be detected. Even if an AP exists around a
gate, there are patterns of physical relationships between the AP and the gate where
our method cannot extract gate passings. Fig. 7 shows two of the examples. In such
a situation as the top of Fig. 7, the RSSIs at points A and B are almost the same,
so the gate passings cannot be extracted by the RSSI variance. In such a situation
as the bottom of Fig. 7, the pattern of the RSSI variance of passing rooms C and D
is almost the same. Thus, using our proposed identical gate-passing detection, the
doors of the two rooms should be detected as the identical door.

Additionally, there are several restrictions to apply our proposed method. First,
the gate must physically divide the environment like doors and elevators. Second,
the person himself should open a gate to pass. If the door is already open, the RSSI
variance cannot be captured.
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Fig. 7 Examples of situations
where it is impossible to apply
proposed method
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3 Experiments

We experimentally evaluated the accuracy of our method using the gate-passing
detection method and the identical gate-passing estimation method.

3.1 Experimental environment

We conducted our experiment on the 1st and 4th floors of the IB Information Build-
ings on Nagoya University. The door alignment and types are shown in Figs. 8 and
9. There were nine doors in the environment including one automatic door. Doors
A F are the entrance doors of the buildings, and doors G I are inside the buildings.

Table 1 overviews the observation data. The subject is one of the authors of this
paper who used an iPhone3G smartphone. He put it in his waist holder and walked
around the experimental environment. His walking speed was not constant; standing
and slow walking were included except for door passings. Our proposed method is
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Table 1 Overview of experimental data

Sampling rate of WiFi observation 1 Hz
Sampling rate of accelerometer 100 Hz

Number of doors 9
Number of door passings A-F: 10 times, BG-I: 20 times
Total experimental time 5300 seconds

applicable when users themselves open and close doors, so he opened and closed
doors when passing them.

3.2 Settings

We adopted LaMarca’s parameter of the Seidel model [8] (Eq. 5).

f (r) = −32−25log10r (5)

Step length s is calculated by the following formula [9].

s = 0.26 ·height +(peakdi f f − peakavg) ·5.0. (6)

Here, peakdi f f is the difference between the value of the local maximum and
the local minimum in each step and peakavg means the average value of peakdi f f .
The user’s height is height. In this experiment, we set the values as height = 1.80[m],
peakavg = 1.11[g].

A,B,C,E,F D G H,I

Fig. 9 Door types
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Table 2 Experimental parameters

Fluctuation of RSSI rσ 2.5 dBm
Threshold of RSSI rthreshold -60 dBm

Threshold of likelihood pthreshold 0.1 %
Threshold of similarity tthreshold 0.4

Window size w 10 sec
Threshold of gate-acc gthreshold 0.15 G

Threshold of gate-passing time wthreshold 2.0 sec

Table 3 Accuracy of gate-passing detection

Gate-passing detected points 157
Actual gate passings 120

Successful gate-passing detection 92
Precision 59%

Recall 76%
F-measure 66%

3.3 Results

3.3.1 Gate-passing detection method

Table 3 shows the result of gate-passing detection. We define correct answers to be
when a detected gate passing is within 10 seconds of the actual door passing. The
precision of the gate-passing detection was about 58%, and the recall was about
76%. Consequently, our proposed method detected about half of the door passings,
but it doesn’t always detect them.

Figure 10 shows the accuracy of the gate-passing detection for individual doors.
The maximum accuracy is 100%, and the minimum accuracy is 40.0%. Based on
the results, the accuracy of the gate-passing detection significantly differs by door,
even though gate-passing detection is possible when the user passes the door many
times.

Automatic doors provide minimum accuracy. When passing automatic doors,
the step length around the door isn’t shorter than manual doors. This explains why
the accuracy of automatic door passing detection is low. Of course, our method is
influenced by the door’s material and the distribution of APs. This is one reason that
the accuracy of gate-passing detection widely differs by door.

On the other hand, WiFi significant points were detected except for around the
gate. One reason is the existence of WiFi hotspots caused by reflections and multi-
paths. For example, corridor’s corner tends to be WiFi hotspot.
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Fig. 10 Gate-passing detec-
tion accuracy for individual
doors
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Table 4 Accuracy of identical gate-passing estimation

WiFi significant points related to door passings 92
Pair of WiFi significant points that

hline have identical gates 348 pairs
Pairs of WiFi significant points where

hline identical gate detection was correct 245 pairs
Pairs of WiFi significant points where

hline they should be estimated as same gate 508 pairs
Precision 70%

Recall 48%
F-measure 57%

3.3.2 Identical gate-passing estimation

Using successfully detected points (92 points), we evaluated the identical gate-
passing estimation. Precision, recall, and F-measure are shown in Table 4. Fig. 11
shows the individual door results of the identical gate estimation. The accuracy of
door G is obviously higher than the other doors. Door G is the thickest, and one
AP is placed near it. Such an ideal environment enhances the accuracy of identical
gate-passing estimation.

The number of errors relevant to doors H and I is 43, 19 of which were mistaken
for other doors. Doors H and I are located within 3 m of each other, so the pattern
of their WiFi environments is similar.

Consequently, the accuracy of identical gate-passing estimation is not as high as
gate-passing detection, even though we found doors on which the identical gate-
passing estimation method was successfully performed. Therefore, we believe that
our method is useful for restrictive situations.

For 245 pairs that were correctly estimated as the same gate, we applied the gate-
passing direction estimation method, and the accuracy was 92%. Additionally, for
door G whose accuracy of identical gate-passing estimation was high, the accuracy
of the gate-passing direction estimation was 100%. Consequently, the gate-passing
direction estimation method is generally useful.
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Fig. 11 Accuracy of identical
gate-passing detection for
each door
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4 Related Works

There are several researches on gate detection. Patel proposed a person movement
detection method based on air pressure sensors attached to HVAC units[10]. The
method captures door openings and closings, door-passing based on the variation
patterns of air pressure, although a case might exist where air pressure sensors are
difficult to attach to HVAC units due to a building’s structure. Moreover, if multiple
persons exist, this method cannot track an individual.

GPS-based building entrance/exit detection methods have also been proposed
[11]. Generally, GPS signal strength tends to be weak Inside buildings. In our
method, with training data that were observed beforehand, we generated a detec-
tion model. Therefore, a labor cost problem exists for prior observation. On the
other hand, our proposed method needs no preparation.

Hotta proposed a robust room-level location estimation method [12]. When gen-
erating WiFi fingerprints, the distance to the nearest door is input. Additionally, they
introduced a room transition probability, which is generated using the distance to the
nearest door; the probability will be high when the location is near a certain door.
Our method doesn’t just detect actual door passings; it also enhances the transition
probability.

5 Application

We are currently trying to correct cumulative error of personal dead-reckoning
(PDR) [13]. By using the proposed identical gate-passing detection method, PDR
could be more accurate like Fig. 12.

PDR is relative position tracking method using multiple sensors such as ac-
celerometer and magnetometer equipped in mobile devices. Sensor values contain
noise, so that error of estimated position tends to be large when the tracking time du-
ration is long. To solve the problem, a kind of absolute position estimation method
should be combined. There are several methods to estimate absolute position by
using GPS, RF tags and WiFi, and so on. Though, most of the methods are not so
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Fig. 12 Cumulative error correction of personal dead-reckoning based on gate identification

practical indoors. GPS signal cannot arrive indoors well. RF tag reader should be
placed for each doors for RF tag based positioning. WiFi fingerprints should be cor-
rected previously in WiFi positioning, so that labor-cost is high [14]. On the other
hand, cumulative error correction based on our proposed identified gate-passing de-
tection can be realized at a lower cost. The method don’t need to place some kinds of
special devices such as RF tag reader for each doors, and don’t need any operation
previously such as observing WiFi environment.

We think that the application is very practical for recording person’s daily indoor
activities such as working in office and live at home in detail. In daily life, person
tends to pass same gate frequently. For example, office worker passes same door at
the working room twice to go to and return from restroom. Therefore, our method
could detect identical gate-passing and can correct trajectory of PDR a number of
times on the same date.

6 Conclusion

We proposed a gate-passing detection method based on WiFi significant points. Our
method is based on the assumption that WiFi environments, which are divided by
gates, tend to be very different. Only WiFi and accelerometer information are used to
detect gate passings. We conducted several experiments and found that our proposed
method has the ability to detect more than half of the gate passings. Identical gate-
passing detection has very low accuracy. However, we found gates whose accuracy
of identical gate-passing methods is high.

Currently, we are developing an indoor pedestrian sensing corpus with a bal-
ance of gender and age for indoor positioning and floor-plan generation researches
(HASC-IPSC) [15]. The corpus contains over one hundred subjects’ pedestrian
sensing data in certain buildings. As future work, we are going to refine the pro-
posed method to achieve high accuracy by using the corpus. The corpus is almost
ready to publish. We consider to publish the corpus for free.
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