
Proposal of a Platform Integrating POI Information

Shinji Ichien
Graduate School of Engineering

Nagoya University
Fro-cho Chikusa-ku Nagoya

464-8601 Japan
Email: ichien@ucl.nuee.nagoya-u.ac.jp

Katsuhiko Kaji
Graduate School of Engineering

Nagoya University
Email: kaji@nuee.nagoya-u.ac.jp

Nobuo Kawaguchi
Graduate School of Engineering

Nagoya University
Email: kawaguti@nuee.nagoya-u.ac.jp

Abstract—With the spread of devices equipped with global
position systems (GPSs), such as smartphones, location-based ser-
vices (LBSs) that can provide point of interest (POI) information,
such as hotels and restaurants, depending on the users’ location,
have increased. LBSs currently face four challenges. First, users
cannot get comprehensive information from a single service.
Second, the attribute information for a POI varies with each
service. Third, the description format of attribute information
differs according to the LBSs and, fourth, incorrect information
may be included in the information provided by the LBSs. In this
research, we propose a platform for integrating POI information
to address and solve the above four issues. With this platform, it is
possible to output integrated information in resource description
format (RDF) for use as Linked Open Data (LOD). In order
to integrate information with respect to a POI, we also propose
an identification method that uses address, phone number, and
name attribute information. This system uses a string operation
method with a POI name and a POI request method with a phone
number. We conducted an evaluation experiment to ensure that
our platform is effective for both methods depending on two
inputted POIs. The evaluation experiment results were precision
1.0 and recall 0.91.

I. INTRODUCTION

Recently, with the widespread use of devices equipped
with global position systems (GPSs), such as smartphones,
getting user location information has become easier. As a
result, location-based services (LBS) that can provide users
with appropriate information according to their current loca-
tion have increased. Examples of LBSs include check in on
Foursquare[1], navigation to a destination, map displays on
Google Maps [2], and restaurant searches on Hot Pepper[3].
Hot Pepper is a Japanese web service that provides restaurant
information. Many of these LBSs provide point of interest
(POI) information, such as hotels and restaurants. Each service
characterizes the POI information and there are currently many
various LBSs. Many provide web application programming
interfaces (APIs). Web APIs make it easier for developers to
develop web services. Yet LBSs face some challengesas shown
below. The fourth challenge (4) is discussed in [5] too.

1) Users are unable to obtain comprehensive information
from a single service.

2) Each service has different POI attributes.
3) The description format of the attribute information

differs among LBSs.
4) Incorrect information may be included in the infor-

mation provided by the LBSs.

When users want to get comprehensive information about
an indoor POI, they could search floor maps or web sites.
However, these floor maps or web sites may not have POI
information, such as vending machines, toilets, and lockers.
In this situation, users cannot get this POI information, even
when they want to search for them.

We propose a platform for integrating POI information that
will overcome these challenges. The identification needs to
integrate the POI information. We also propose POI identi-
fication methods that will determine whether the same POIs
are included in the LBSs’ information using phone number,
address, and name from the POI information.

In this platform, the user’s query is made from the latitude,
longitude, search radius, and keywords. The integration part
integrates the information the LBSs obtained based on the
query and returns the integrated information to the user.
We discuss the POIs in Section II, propose a platform for
integrating POI Information in Section III, and discuss the POI
identification methods in Section IV. Also, in Section V, we
describe the evaluation experiment, provide a summary, and
detail challenges for the future.

II. POI (POINT OF INTEREST)

The POI (point of interest) is a specific point location that
someone may find useful or interesting, such as restaurants,
sightseeing spots, and hotels. In our definition of POIs, we
include objects, such as lockers, automated external defib-
rillators(AEDs), and vending machines. We define a POI as
information that includes all attributes, such as name, latitude,
longitude, and address. We also consider temporary spots to
be POIs. Examples of temporary POIs are temporary events,
such as new or closed shops. We discuss LBSs and indoor
POIs below.

A. Location-based service

Many LBSs provide web APIs to obtain POIs. Examples
include Foursquare, Google Places[4], Yahoo! Local search[6],
Hot Pepper, Gurunavi[7], and Tabelog[8]. Hot Pepper, Gu-
runavi, and Tabelog are Japanese web services for searching
restaurants in Japan. In general, a web API uses hypertext
transfer protocol (HTTP). Users can get the content data of
each LBS using web APIs. They can select the content data
by setting parameters into the web API’s uniform resource
locator (URL) and receive data in JavaScript object notation
(JSON) or extensible markup language (XML) format. The

2014 Seventh International Conference on Mobile Computing and Ubiquitous Networking (ICMU)

978-1-4799-2231-4/14/$31.00 ©2014 IEEE 123

data formats that they can select depend on the LBS. It is
necessary to obtain an ID for each LBS in order to use the
web API and to maintain a license to use the content data of
each LBS. Each LBS also limits the number of requests per
day.

1) Investigation: Using the web APIs of Hot Pepper,
Gurunavi, and Tabelog, we collected restaurant POIs within
a 1.0-km radius of Nagoya Station. (With Tabelog, the search
radius was a 1.5 km because of the web API’s specification.)
We analyzed whether the same POIs were included (Research
month: January 2013). The result of this analysis is shown
in Figure 1. The amount of POIs from each LBS were
Hot Pepper:569, Gurunavi:484, and Tabelog:1021. Hot Pepper
and Gurunavi receive their information from the individual
restaurants. Tabelog had many POIs that Hot Pepper and
Gurunavi did not. We believe that Tabelog’s POIs are registered
by actual Tabelog users. From these results, we confirmed that
the POIs obtained from each LBS differ.

We investigated the POI attributes from LBSs and gathered
the attributes of a POI from them, as shown in TABLE I. In the
second line of TABLE I, the Name attribute from Gurunavi not
only includes the restaurant name, but also includes a public
relations description of the restaurant (”Akakara nabe to seseri
yaki”). In the third line, the address information differs among
the LBSs in relation to prefecture and street numbers. Building
name and floor information are not identical as some LBSs
used abbreviations. Phone number information could not be
retrieved from Hot Pepper and Google Places provided the
phone number in international format. From the above, we
could confirm that the attributes and formats differ among the
LBSs.

����

����

�������

���

����

���

�������
�����

��������
����

�����������
��	�

Fig. 1. Investigation of overlap for POI from 3 LBSs

TABLE I. ATTRIBUTES OF A POI [AKAKARA MEIEKI-TEN]

Names of LBSs Gurunavi Hot Pepper Google Places

Name of POI
　

Akakara nabe to
seseri yaki

Akakara meieki-ten
Akakara meieki-ten

　　
Akakara meieki-ten

　

Address
　
　

Touyou Building
B1

3-14-16
Meieki

Nakamura-ku
Nagoya
Aichi

Touyou Build.
B101

3-14-16
Meieki

Nakamura-ku
Nagoya

Touyou Building
B1F

3-tyoume 14-16
Meieki

Nakamura-ku
Nagoya
Aichi

Latitude 35.172474 35.172452 35.172220
Longitude 136.883723 136.8838750 136.8843340

Phone number 052-588-xxxx None +81 52-588-xxxx
Opening hours ◯ ◯ ◯

Genre × ◯ ◯
Access ◯ ◯ ×

Nearest station ◯ ◯ ×
Seating capacity × ◯ ×

Smoking × ◯ ×
Coupon ◯ ◯ ×

B. Investigation of indoor POIs

There are various indoor POIs, such as the floors of
buildings and underground shopping areas. In general, when
you are outdoors, you can search POIs using Google Maps,
Yahoo! Maps[9], and others. However, when you are indoors,
you need a floor map and a web site for that particular
building. Map applications, such as Google Maps and Yahoo!
Maps, provide a function for inspecting the indoor map of
certain buildings. The indoor maps display the locations of
shops, toilets, ATMs and doorways, but these POIs are not
always available. In addition, detailed information about the
indoor POIs, such as whether restroom facilities are good or
what financial institution’s ATMs are available, is not always
provided because many indoor maps display only the POI’s
type or name.

We surveyed indoor POIs that were not displayed on an
indoor map of Yahoo! Maps on the first floor of Midland
Square, the area of Termina [about 7,200m2] and Meichika
[about 3,000m2] in B1 of Nagoya Station. (Research month:
April 2013).

The results are shown in Table II. We believe that some
indoor POIs may be removed or installed, such as public
telephones, vending machines, and ATMs.

TABLE II. INDOOR POIS NOT DISPLAYED ON THE INDOOR MAP

Type of POI Number
Vending machine 6
Public telephone 5

Locker 4
ATM 4
AED 2

Fire extinguisher
Panic Button 6

III. PLATFORM INTEGRATING POI INFORMATION

Figure 2 shows the abstract of our platform. The system
part of the platform integrates POI information and manages
the POI database (DB) and LBSs. The system part takes a
roll of the hub between the LBSs and the clients. Clients
can use this to send a request query. The system’s operating
process functions as follows: The client manager in the system
part receives a query that a client creates based on latitude,
longitude, search radius, and keyword. The LBS managers
then convert the query that corresponds to the LBS and obtain
a result. Finally, the integrating part integrates these results
and returns this integrated information to the client. Each of
the LBS managers manages only one LBS and is provided a
plug-in to the system part. The clients can select the LBSs
that they want to use. The POI DB stores the integrated
information in resource description format (RDF) format for
use as Linked Open Data (LOD). By using POI data as LOD,
we can construct a large database of POI knowledge and a
relationship with the data having a low relevance to POIs,
which can be serendipitous for users. For example if a user
goes to restaurant:A, the user may know the information of a
celebrity who has been to restaurant:A and recommends spots
by dereferencing a link of LOD about this restaurant.

2014 Seventh International Conference on Mobile Computing and Ubiquitous Networking (ICMU)

124

��"�� �"����
���� ��"�����

�� "�

��	�
��

����
��

	����"������ �

	����"�

�&!"��� ����"������!����� $����

���#�"�� �	 �%�!�# ������
���������

�� $��������� �

���#�"�� ������ �
����������� !� �

�"���!��
����� �

��	�
��

��	�
��

Fig. 2. Platform for integrating POI information

A. Operating process of the platform

When clients use this platform, the operating process of
this platform differs according to whether the POI DB stores
the POI information or not. The POI DB is the database for
the POI data in this platform.

Case1: The POI data does not exist in the POI DB. The
integrating part of the system in this platform receives the
POI information from the LBSs. It normalizes the attribute
information of the POIs to fix the format, thus overcoming
challenge (3) of Section I. Next, it integrates the POI informa-
tion, thus resolving challenge (1). This integrated information
is more comprehensive than that of a single LBS. When two
identical POIs are included in the integrated information, the
integrating part combines these repeated attributes into one and
returns it to the client, giving the client more comprehensive
POI attribute information and thereby resolving challenge (2).

Case2: The POI data is in the POI DB. The system sends
a client’s query to the LBSs and the POI DB respectively,
after which the integrating part receives two data parts–one
from the LBS and one from the POI DB. Sometimes, the POI
attribute information received from an LBS is incorrect, which
is misleading for clients. At the same time, the integrating part
also sends the client’s query to the POI DB and obtain POIs
from it. The integrating part then compares these two results.
The integrated information from the integrating part is stored
in the POI DB. POI identification methods will be discussed
in Section IV.

B. Acquiring POI attribute information

Web APIs of the LBSs can acquire only the attributes
each LBS provides. We discuss a method to acquire attribute
information, such as building name, floor name, and comments
about POIs, below.

1) Web page: Official web pages are often provided for
POIs that have a large area, such as a department store or
station. Web page parsers parse the HTML of a web page
and extract the POI attribute information. Examples of the
extracted information are building names and floors. This is
done because the format is not unified and these are often
included in an address or building name. It is therefore difficult
to decide whether the information is correct or not. With this
platform, we implemented an editing tool that can reduce the
burden of modifying incorrect information. This tool can input

the information from a web page. Also, each of the web page
parsers receive the attribute information automatically.

2) Crowdsourcing: POIs have various attributes. It is im-
possible to edit and add all POI attributes by oneself. We
defeat challenge (4) by taking advantage of crowdsourcing to
edit and add the attribute information, and to collect POIs.
We also exploit crowdsourcing to collect information and
edit[10],[11]. The purpose of crowdsourcing is to efficiently
collect not only the attributes of POIs, but also POIs that are
difficult to collect, for example, toilets and vending machines.
Integrating the information of the LBSs with the collected
information improves the comprehensiveness of the POIs. POIs
that have added user-generated information are related with
other POIs or LOD by exploiting as LOD. We believe that
this can recommend useful information and POIs for users.
For example, when a user who is interested in music goes on
a trip, he will be notified of relevant POIs at his destination,
such as live concerts of favorite artists and locations associated
with these artists. In addition, our system of promoting user
access is necessary for utilizing crowdsourcing. We think that
this platform should constitute a reward system that gives
points according to the usage and amount of user-generated
information and input, and makes it possible to exchange
the points for coupons or prepaid cards, thus constructing an
ecosystem for crowdsourcing.

C. Storing the integrated POI information

The integrated information is stored in the POI DB. The
data of the POI DB is outputted in RDF format to use as
LOD[12], [13].

1) The structure of the integrated information: The in-
tegrated information can be outputted in RDF format. RDF
format is described as a triple. A triple is composed of
three elements: subject, predicate and object. The triple of
an integrated POI is shown in Figure 3. The POI ID is a
subject. The predicate is an arrow and indicates the relationship
between a subject and an object. The subject and object is
described as an eclipse shape. In Table III, the predicates and
objects are shown. These are related with the subject POI ID.

Not all POI attribute information from the LBSs is stored in
the POI DB. The stored information is only open information,
for example, name, latitude, longitude, address, building name,
floor name, phone number, and category. This is in order to
maintain the LBS license. Indoor POIs can be presented using
the attributes of latitude, longitude, building ownership, floor,
and category.

POI$ID�

Subject� Predicate� Object�

Fig. 3. The triple of the integrated POI information

D. Implement of web application

We developed a prototype web application to implement
the proposed platform.

2014 Seventh International Conference on Mobile Computing and Ubiquitous Networking (ICMU)

125

TABLE III. THE LIST OF PREDICATES AND OBJECTS AGAINST A
SUBJECT

Predicate Object
LBSid: hotpepperID Hot Pepper-ID
LBSid: guruNaviID GuruNavi-ID
LBSid: TabelogID Tabelog-ID
LBSid: XXXXID ・・・・

foaf:name Name of POI
geo:lat Latitude
geo:lng Longitude

lodac: postalCode 466-XXXX
lodac: address Address

lisra: buildingIn other POI ID
lisra: floor Floor Name
lisra: area Area Name
lodac: tel Phone Number

lodac: genre Restaurant
lodac: starttime 10:00
lodac: endtime 22:00

1) Implementation of the proposed platform: We imple-
mented the integrating part of the system in Java. Users input
latitude and longitude, and a search radius as their queries.
They can then get POIs from LBSs in JSON format based
on their queries. The integrating part converts them to java
objects and creates one-dimensional lists for every POI using
the identification method. The identification method will be
discussed in the following section. The final result is a two-
dimensional list having one-dimensional lists of the same POIs,
which is outputted in JSON format.

2) Implementation of the client application: We imple-
mented a prototype of a client application in Play!Framework.
Figure 4 shows the start window that the prototype first opens
when it starts in a web browser. The client inputs an address
or latitude and longitude as his present location and selects a
search radius from 100 m, 600 m, or 1,000 m. When the client
inputs the address, it is converted to latitude and longitude by
Google Geocoding[14]. In the future, we are going to improve
the prototype to enable retrieving the client’s location from a
web browser or GPS.

Figure 5 shows that the POIs obtained from LBSs based
on the client’s location are displayed on Google Maps. The
prototype can now get restaurant POIs from three LBSs–Hot
Pepper, Gurunavi, and Tabelog. We use the Google Maps
API[15] for the map display. The POIs are described as
different color markers to visualize which POIs were obtained
from which LBS. The color of the POI marker is red if a POI
is from Hot Pepper, green if from Gurunavi, and blue if from
Tabelog. If a POI is from more than one LBS, the marker color
will be mixed. For example, if the maker color is yellow, it
is from both Hot Pepper and Tabelog. The left side of Figure
5 is the list of POIs. In Figure 6, the information window of
the POI is displayed when the marker is clicked. This window
shows the information of the POI and the icon of the LBS that
provided the POI. The LBS icon is also a link to the LBS. The
edit window is shown in Figure 7. From this window, users
can edit the POI attribute information. This is displayed when
the edit button in the lower part of the information window is
clicked. In the future, users will be able to add new information
through this window.

Fig. 4. Window for inputting a client’s current location

Fig. 5. Window for displaying POIs

Fig. 6. Window for displaying POI details

Fig. 7. Window for editing POI attribute information

IV. INTEGRATING METHOD FOR POI

Identifying POIs is essential for integrating many POIs
from a number of LBSs. The attributes used are an address, a
phone number, and a name. That is why this information can
often be gathered from many LBSs and is considered unique
information about a POI.

First, the system part of the platform normalizes the
attribute information to unify the format. The system uses the
address normalize API[16] to normalize the address. This API
is an external service. Building and floor are not included in
the normalized address. A phone number is converted as the
format to adapt each country. A name is not normalized.

Second, address clusters are created for every POI having

2014 Seventh International Conference on Mobile Computing and Ubiquitous Networking (ICMU)

126

the same address by matching with addresses of POIs from a
number of LBSs. In each address cluster, the system part makes
the identification to all combinations of POIs in the address
cluster. We believe that identifiable POIs are in the same
address cluster. The reason for creating the address clusters
is to reduce the calculation count by identifying in the address
cluster. The POI identification method is discussed below.

3) Identification method: The POI identification system in
the integrating part identifies the POIs. Two POIs are inputted
to this system and this system outputs whether they are the
same or not. First, this system confirms whether the names
of the two POIs are the same. If they are, the inputted POIs
must have a common phone number. If the names are not
the same, the system decides that they are not identifiable.
This improves processing speed. Second, the system performs
a string operation method with a POI name against the inputted
POIs that have the same phone number. If the other POI
only has a phone number, this system uses a POI request
method with a phone number that uses the POI request API
with a phone number. Also, if the two inputted POIs do not
have a phone number, this system utilizes the string operation
method with a POI name. As described above, the POI
identification system switches between the two determination
methods according to the particular case.

POI request method with a phone number:

The POI request API with a phone number is an API
that retrieves POI information requesting a phone number, as
follows: The inputted POIs are POI:A and POI:B. POI:A is
obtained from LBS:A and POI:B is obtained from LBS:B.
POI:C is obtained from the POI request API with a phone
number of LBS:B by using a phone number of POI:A. If POI:C
and POI:B indicate the same POI, they have the same attribute
information and format. That is why they are obtained from
the same LBS. We recognize that the name information or the
LBS ID is unique to a POI, so this method judges whether
POI:A and POI:B are the same or not using this information.
It is necessary to satisfy the condition that POI:A has a phone
number and LBS:B is suitable to the POI request API with a
phone number.

String operation method with a POI name:

This method derives the edit distance[17] and the longest
common part character string length from two POI name
strings. The POI name string is a string with the POI’s location
string deleted from the name information of a POI. The POI
name string is divided into plural character strings at every
space. We think that these dividable character strings by spaces
have some kind of meaning.Also, the POI’s location string is
the string with an end character of ”店 (ten).””店 (ten)” is a
Japanese word that means POI location. We show an example
of the process of extracting the POI name string in terms
of the name information ”Starbucks meieki-ten.” As a result,
the POI name string ”Starbucks” is extracted. ”Meieki-ten”
is removed for having the string of ”ten.” Finally, the final
identification algorithm is obtained by machine learning. Two
POIs are identified by this algorithm. We use a seven feature
value for this, specifically, the edit distance between two POI
name strings, the longest common part character string length
between two POI name strings, the two lengths of the name
information of two POIs, the edit distance between the name

information of two POIs, the longest common part character
string length between the name information of two POIs, and
the true judgment result for two POIs. We use machine learning
because the name information of a POI often includes a string
that is irrelevant to the POI name string and the POI name
string is varied. From the above, it is difficult to determine the
threshold value for identifying a POI.

Arakawa et al.[18] conducted similar research on POI
obtained from plural web services. Arakawa et al.[18] used
only the POI name for identification and an evaluation was
not performed. In contrast, we completed an evaluation and
an examination of the proposed identification methods. We
discuss these results in Section V.

V. EVALUATION AND EXAMINATION

A. Evaluation

We evaluated the POI identification system to confirm that
this system is more effective than the two proposed identifica-
tion methods. We inputted the dataset (True:50 False:450) to
the machine learning software Weka and used J48 classifiers.
We depicted the edit distance as D and the longest common
part character string length as L. As a result, we got the
algorithm that if L is 2 or more and D is 8 or less, or if
L is 5 or more and D is 9 or more, the two inputted POIs
are identified. This algorithm is used as the final judge of the
string operation method with a POI name.

We evaluated the proposed POI identification system. We
obtained evaluation data from the three LBSs–Hot Pepper,
Gurunavi, and Tabelog. The data was restaurant POIs within a
1.0-km radius of Nagoya Station, Japan. The numbers of POIs
from each service were Hot Pepper: 569, Gurunavi: 484, and
Tabelog: 1021. We learned that the number of identifiable POIs
was 551 and the number of unidentified POIs was 701. We
evaluated three cases and determined the recall and precision.
The first case was the POI request method with a phone
number, the second was the string operation method with a
POI name, and the third was the POI identification system.
TABLE IV, V, VI lists the results. The precision of the POI
identification system was 1.0 and the recall was 0.91. This
was the best of the three cases. We confirmed that it is more
effective to use two different methods.

TABLE IV. POI REQUEST METHOD WITH A PHONE NUMBER

　 correct answer
　 True False

Prediction True 413 38
False 138 663

TABLE V. STRING OPERATION METHOD WITH A POI NAME

　 correct answer
　 True False

Prediction True 456 6
False 95 695

TABLE VI. POI IDENTIFICATION SYSTEM

　 correct answer
　 True False

Prediction True 503 0
False 48 701

2014 Seventh International Conference on Mobile Computing and Ubiquitous Networking (ICMU)

127

TABLE VII. RESULT OF THE EVALUATION

POI request method
with a phone number

String operation method
with a POI name

POI identification
system

Precision 0.91 0.98 1.0
Recall 0.74 0.82 0.91

B. Examination

There are three challenges for the string operation method
with a POI name. The first is that the algorithm from the
machine learning cannot identify POIs with the name of one
character. The second is that the name information often
includes character strings that are irrelevant to the POI name.
In particular, the name information from Gurunavi often in-
cludes irrelevant character strings, for example, a character
string about a comment, a genre, or the equipment.There are
many cases where the edit distances are large because of
their effect. The third is that this method cannot distinguish
the used languages. In TABLE VIII, we show an example,
although the example uses Japanese words. These Japanese
words are translated in TABLE IX. For the POI name from
Hot Pepper, both English and Katakana are used. Katakana is
a Japanese alphabet used primarily for words borrowed from
other languages. Only english is used for Gurunavi. English
and Chinese characters are used for Tabelog.

We provided two challenges for the POI request method
with a phone number. The first is that the amount of daily
requests for the API is restricted by the LBS, so it is undesir-
able to use this API frequently. The second is that this method
cannot distinguish POIs that have the same phone number. An
example is illustrated in TABLE X.

TABLE VIII. DIFFERENCE BETWEEN A NAME AND A USED LANGUAGE
FOR A POI

Name of LBS Name

Hot Pepper
”ザ キッチン

”The Kitchen SALVATORE CUOMO”
Gurunavi ”The Kitchen Salvatore Cuomo NAGOYA”

Tabelog
“ザ キッチン サルヴァトーレ クオモ

名古屋”

TABLE IX. TRANSLATION OF THE JAPANESE WORDS

Japanese word English translation
ザ The

キッチン kitchen

サルヴァトーレ クオモ
Salvatore Cuomo
(restaurant name)

名古屋 Nagoya

TABLE X. POI HAVING THE SAME NAME

Name of LBS Name of POI Phone number
Gurunavi Nagoya Asada 052-569-xxxx
Tabelog Ihei 052-569-xxxx

VI. CONCLUSION AND FUTURE CHALLENGE

A. Conclusion

In this paper, we proposed a platform integrating POI in-
formation from various LBSs to overcome the four challenges

discussed in Section I. We also proposed a POI identification
method to integrate the POI information and evaluated this
method. We further developed a prototype of the proposed
platform as a web application.

B. Future challenge

We are going to prepare a triple store to store the integrated
information as an RDF and open the dataset of this as an LOD.
We are also going to cooperate with various open data and use
other LBSs for the comprehension of POIs and accuracy of
information. OpenStreetMap[19] is the likeliest for the open
data. We will also open and use the platform practically as an
API.

ACKNOWLEDGMENT

The research leading to these results was partly funded
from the Strategic Information and Communications R&D
Promotion Program (SCOPE) of the Ministry of Internal
Affairs and Communication (132306007).

REFERENCES

[1] Foursquare．http://ja.foursquare.com/
[2] Google Maps．http://maps.google.co.jp/
[3] Hot Pepper．http://www.hotpepper.jp/
[4] Google Places．http://www.google.co.jp/landing/

placepages/
[5] Kazunari Ishida. On an Analysis of Geographical Information and a Geo-

Local Contents System with Mobile Devices. IPSJ SIG Technical Report．
DD, 2011-DD-80(11)，1-8，2011. (Japanese thesis)

[6] Yahoo! Local Search．http://search.olp.yahooapis.jp/OpenLocalPlatform/
V1/localSearch

[7] Gurunavi．http://www.gnavi.co.jp/
[8] Tabelog．http://tabelog.com/
[9] Yahoo! Map．http://map.yahoo.co.jp/
[10] Keisuke Higashida. Collecting the Information about Point of Interest

by Crowdsourcing. IEICE Technical Report．AI 111(447)，17-19，2012-
02-21. (Japanese thesis)

[11] Yuki Suzuki, Kaji Katsuhiko, Nobuo Kawaguchi. Constructing and
Collecting Indoor Structural Map Data with Crowdsourcing. IEICE
Technical Report. MoMuC 111(296)，1-6，2011-11-10. (Japanese thesis)

[12] Max Braun. Context-aware Collaborative Creation of Semantic Points of
Interest as Linked Data. Master’s thesis, University of Koblenz-Landau,
Germany (2009).

[13] Jong-Woo Kim, Ju-Yeon Kim, Chang-Soo Kim. Semantic LBS: On-
tological Approach for Enhancing Interoperability in Location Based
Services. In: On the Move to Meaningful Internet Systems 2006: OTM
2006 Workshops Springer Berlin Heidelberg, 792-801, 2006.

[14] Google Geocoding API．https://developers.google.com/maps/documentation/
geocoding/?hl=ja

[15] Google Maps API．
https://developers.google.com/maps/?hl=ja

[16] The address normalize API．
http://tou.ch/developer/api all?uri=geo

[17] Hiroyuki Hanada, Mineichi Kudo. A Study on Fast Search of the Near-
est String in Edit Distance. IEICE Technical Report. PRMU 108(94)，
41-45，2008. (Japanese thesis)

[18] Yutaka Arakawa, Tatjana Scheffler, Stephan Baumann, Andreas Dengel.
Integration of Place API. IPSJ SIG Technical Report, 2013-DPS-155, 30,
1-6, 2013. (Japanese thesis)

[19] OpenStreetMap. http://www.openstreetmap.org/

2014 Seventh International Conference on Mobile Computing and Ubiquitous Networking (ICMU)

128

