
Journal of Information Processing Vol.21 No.1 131–144 (Jan. 2013)

[DOI: 10.2197/ipsjjip.21.131]

Regular Paper

Scalable QoS for XCAST Using Differentiated Services
Architecture

Odira Elisha Abade1,2,3,a) Katsuhiko Kaji1,2,b) Nobuo Kawaguchi1,2,c)

Received: February 1, 2012, Accepted: September 10, 2012

Abstract: Explicit multiunicast (XCAST) has been proposed as a multicasting scheme with complementary scaling
properties which can solve the scalability problems of conventional IP Multicast. XCAST is suitable for videocon-
ferencing, online games and IPTV. This paper deals with QoS provisioning in XCAST networks using Differentiated
Services (DiffServ). We show that integration of DiffServ in XCAST is a non-trivial problem due to inherent archi-
tectural differences between XCAST and DiffServ. We then propose a scheme called QS-XCAST that uses dynamic
DSCPs to adapt to the heterogeneity of receivers in an XCAST network. We also provide an algorithm for harmonizing
the receiver-driven and sender-driven QoS approaches between XCAST and DiffServ thereby determining the correct
DSCP-PHB for all links in an XCAST network. By simulating using OMNeT++ we evaluate QS-XCAST using four
metrics: throughput, average per-hop-delay, link utilization and forwarding fairness to other traffic in the network. Our
solution eliminates DSCP confusion and collusion attack problems to which naive XCAST QoS provisioning is vul-
nerable. It also offers a more efficient bandwidth utilization, better forwarding fairness and less traffic load compared
to the existing XCAST.

Keywords: XCAST6, QoS, multipoint communication, DiffServ, QS-XCAST, collusion attack, Good Neighbour Ef-
fect

1. Introduction

The expansive growth of the Internet in the past decades has
resulted in merging of both data and real-time multimedia traffic.
Availability of adequate bandwidth at low cost however continues
to be one of the challenges facing Internet users today. While the
available bandwidth to the end users has continuously increased
over the same period, the increase is always outdone by an in-
crease in the number of Internet users and the emergence of new
applications some of which have intensive bandwidth consump-
tion.

As the number of services and users on the Internet increases,
so is their diversity in terms of bandwidth, delay and jitter require-
ments. These requirements are dependent on several factors like
the media processing capabilities of the user devices, the amount
of bandwidth the users are capable of paying for and the contract
agreements with the ISPs. Quality of Service (QoS) provisioning
on the other hand is a complex mix of factors such as bandwidth
availability, criticality of applications, pricing and the nature of
the underlying networks. Therefore enforcing a single QoS pro-
visioning strategy might not work in this scenario hence the need
for heterogeneous QoS provisioning for each of the users and ser-

1 Graduate School of Engineering, Nagoya University, Nagoya, Aichi
464–8603, Japan

2 WIDE Project, Japan
3 School of Computing & Informatics, University of Nairobi, Nairobi,

Kenya
a) abade@ucl.nuee.nagoya-u.ac.jp
b) kaji@nuee.nagoya-u.ac.jp
c) kawaguti@nagoya-u.jp

vices running on the Internet. This becomes even harder in mul-
ticast where data to multiple recipients is sent out in only a single
packet.

The Differentiated Services (DiffServ) architecture [1], [2] is
one of the proposals made by the IETF for provisioning of QoS
in the Internet. In this architecture, the network routers are clas-
sified into two main groups of core routers and edge routers. The
edge routers are further categorized as either ingress edge-routers

or egress edge-routers, depending on their locations relative to the
source of the packets transmitted in the network. These routers
form a domain in which the ingress edge-routers’ principal task
is to mark the packets with specific codes called DiffServ Code
Point (DSCP) and each DSCP is expected to allow the flow in the
network to be shaped according to a specific defined behaviour
called Per-Hop-Behaviour (PHB) [1], [2], [3], [4], [5].

Explicit multiunicast (XCAST) [6], a promising technology for
IPTV, videoconferencing and multiplayer online games, has been
proposed as a multicasting scheme with complementary scaling
properties which can solve the scalability problems of conven-
tional IP Multicast. Most research in XCAST however have fo-
cused on its performance [7], [8], [9], [10], [11], [12], [13] and
implementation [6], [14] in the Internet leaving out its Quality of
Service. In addition to difficulties facing muticast QoS provi-
sioning [15], QoS provisioning in XCAST is further complicated
by the fact that while XCAST is a form of multicast, routing of
XCAST packets does not use the multicast tree delivery paths but
instead it uses a unicast routing table [6]. Therefore most of the
current solutions on integrating DiffServ with Multicast which
are dependent on construction and aggregation of multicast trees

c© 2013 Information Processing Society of Japan 131

Journal of Information Processing Vol.21 No.1 131–144 (Jan. 2013)

cannot be applicable in XCAST networks. QoS provisioning in
XCAST using Differentiated Services should therefore be cog-
nizant of the need for heterogeneous QoS owing to the inherent
heterogeneity of the receivers and at the same time avoid reliance
on multicast forwarding tables. This calls for the need for dy-
namic DSCP assignment based on unicast routing.

In this paper we highlight the architectural conflicts between
XCAST and DiffServ that make their integration a non-trivial
problem and then propose a scheme called QS-XCAST that uses
dynamic DSCPs to cater for the heterogeneity of receivers in
an XCAST network. We also provide an algorithm for harmo-
nizing the receiver-driven and sender-driven QoS issues between
XCAST and DiffServ thereby determining the appropriate DSCP-
PHB for all links in the XCAST network. Through simulation in
OMNeT++ [16], [17] we evaluate our solution using the follow-
ing metrics: throughput, average per-hop delay, link utilization,
traffic load and forwarding fairness. The latter two are obtained
from the router’s buffer evolution pattern. We show that our so-
lution eliminates the problems of DSCP confusion and collusion

attack that impede integration of DiffServ in multicast networks.
It also gives better performance in terms of bandwidth utilization,
forwarding fairness to other protocols and less traffic load on the
router.

The rest of this paper is organized as follows. In the next
section we briefly describe the XCAST protocol and then high-
light the issues that complicate XCAST-DiffServ integration. We
also briefly introduce currently existing DiffServ-Multicast inte-
gration approaches and explain why they are not applicable for
XCAST-DiffServ integration. In section three we describe our
proposed solution and in section four we implement the solution
in OMNeT++ simulation environment and then discuss the sim-
ulation results and other possible effects of our proposal in an
XCAST-DiffServ network. Conclusion and future work are given
in section five.

2. XCAST6 Overview and QoS Multicasting

XCAST protocol concept and options have been defined by
the IRTF in Ref. [6] for both IPv4 and IPv6. The implementation
of XCAST on IPv6 is usually referred to as XCAST6 [6], [12],
which is the focus of our work.

2.1 XCAST6 Overview
In contrast to the conventional IP Multicast and other multi-

cast variants [18], [19], in XCAST6, the sender explicitly speci-
fies the destination addresses of all receivers as a list of unicast
addresses embedded in the IPv6 packet header. Succinctly, the
sender embeds a list of IPv6 addresses of the destinations in the
routing extension header of the IPv6 packet and then sends the
packet to a router. Along the transmission path, each router ex-
amines the IPv6 packet header in order to determine the next-hop
for each destination specified in the list. The router then groups
together the destinations with the same next-hop and finally for-
wards a packet with an appropriate XCAST6 header to each of the
identified next hops. The process is repeated until all the desti-
nations are reached. The XCAST6 packet header also comprises
of a bitmap with bits corresponding to each destination, which

Fig. 1 XCAST6 overview.

the routers use to determine which of the embedded destinations
the packet needs to be delivered and to which ones a copy of the
packet has already been delivered.

Therefore if a bit corresponding to a given destination is set to
1, it means the packet needs to be delivered to that destination.
Each of the branching routers updates this bitmap for each copy
of XCAST6 packet during replication. In Fig. 1, the sender (A)
sends an XCAST6 packet to B, C, D and E. The destination ad-
dresses B, C, D, E have corresponding bitmaps which if set means
the packet is to be delivered to a corresponding destination and if
reset, means otherwise. On each XCAST6 router, if need be, the
XCAST6 packet is duplicated, bitmaps updated and delivered up-
ward according to the destination’s next hop with respect to the
current branching router.

2.2 Problems in XCAST QoS Provisioning with DiffServ
A group communication system using XCAST needs to con-

sider group, network and traffic dynamics that will affect the
quality of communication. Group and network dynamics refer
to factors such as member join or leave events and changes in
the network topology possibly due to node or link failures or the
addition of new nodes or links in the network. Traffic dynamics
however relate to data flow, link congestion and error control in
the network. To take care of these dynamics, an XCAST network
should have some form of QoS provisioning such as integration
with DiffServ. Considering the heterogeneity of the receivers,
such an XCAST-DiffServ network would have to guarantee dy-
namic QoS appropriate to the demand of each receiver. This calls
for QoS Precedence in which each link in the delivery path guar-
antees data to be delivered at a QoS level not lower than the high-
est level issued by any of its downstream links. Guaranteeing
QoS precedence using DiffServ in an XCAST network is how-
ever challenging due to the following reasons:
(1) Multipoint data delivery using unicast routing tables:

XCAST delivers data to multiple receivers but it does not
rely on multicast forwarding tables (MFT) in its routing of
data packets. Instead, XCAST routers lookup next hops in
unicast routing tables and depend on unicast routing proto-
cols. This means that QoS multicasting techniques that rely
on either aggregation or multiplexing of the multicast trees
within a DiffServ domain or between DiffServ domains can-
not solve the XCAST-DiffServ integration problem on the
one hand while on the other hand, unicast based DiffServ
cannot provide a solution since XCAST delivers data to mul-

c© 2013 Information Processing Society of Japan 132

Journal of Information Processing Vol.21 No.1 131–144 (Jan. 2013)

tiple recipients.
(2) QoS heterogeneity for a single data packet: XCAST

achieves its multipoint delivery capability through the use of
encapsulation techniques whereby multiple destination ad-
dresses are embedded in an IP packet header. This means
that one packet contains data to be delivered to multiple re-
ceivers each of which is likely to have different QoS require-
ments. The packet’s QoS should therefore be such that all
the embedded receivers’ QoS requirements are met. Boivie
et al., in Ref. [6] recommend setting the packet’s QoS to that
of the most demanding receiver. However this approach is
insufficient because it leaves serious gaps in management of
resources in an XCAST network as we shall be explaining
in “resource management ” section.

(3) Sender-driven QoS versus receiver-driven QoS: This is
fundamentally an architectural conflict between XCAST
and DiffServ that complicates XCAST-DiffServ integration.
XCAST allows members to join a group at the QoS level that
meets their requirements. Furthermore in multicast of which
XCAST is a variant, the receivers can request for different
levels of QoS depending on the changes in the resources
available to them or other dynamics in the network. This is a
receiver-driven approach to QoS control which is inherent in
multicast (and by extension in XCAST) architecture. In Diff-
Serv on the other hand, the QoS provisioning starts from the
sender side. The ingress routers insert the appropriate Dif-
ferentiated Service Code Point (DSCP) for the receiver in
the packet header. The core routers on the other hand simply
check the packet’s DSCP and then determine the appropri-
ate forwarding queue for the packet. This is contrary to the
architectural design in multicast (and XCAST too) since the
receiver does not mark the packets to determine their QoS
level.

(4) Resource management:
(a) DSCP Confusion Problem: We consider an XCAST

network of hosts with heterogeneous QoS requirements
as shown in Fig. 2. Assuming this is an IPTV service
provider network offering IPTV services at various Ser-
vice Level Agreements (SLAs) which are classified into
various plans dubbed Premium, Gold, Silver, Bronze

and Normal. These plans are then mapped onto Expe-

dited Forwarding (EF) [3], AF41, AF31, AF21 [4] and
Best Effort (BE) [5] DSCP-PHB classes respectively.
We note that host (H1) is a premium customer, (H2)
is a Gold customer and host (H3) is a Bronze customer.
Each of them pay different prices for the services and
require different treatment but their data is delivered in
the same XCAST packet.
If an XCAST packet is sent from the source to all three
customers, then depending on the routing table entries
and the underlying routing protocol in the network, po-
tentially there are three branching routers where the first
replication of the XCAST packet can occur; on router
R1, router R5 or router R7. Let us assume that replica-
tion happens at router R5. Since all the links from the
source to the host H1 are premium (have EF DSCP),

Fig. 2 XCAST6 network with heterogeneous QoS requirements.

Fig. 3 XCAST6 DSCP confusion problem.

Fig. 4 XCAST6 collusion attack problem.

the DSCP class of the packet from the source will be
EF. On replication, two copies of the XCAST packet
emerge, each of which should now be handled at differ-
ent QoS levels. The copy bound for H2 and H3 through
router R8 should be handled at AF41 while that bound
for H1 should receive EF DSCP treatment .
Since XCAST currently does not support dynamic
DSCPs, router R5 will not queue the two XCAST
packet copies in their correct DSCP queues as illus-
trated by Fig. 3. Router R5 will most likely queue the
copy bound for R8 on an EF DSCP queue yet it should
be queued on AF41 queue. This is referred to as DSCP

confusion problem. While implementing QoS provi-
sioning in XCAST using DSCP, the algorithm should
solve such likely DSCP confusion problem.

(b) Collusion Attack Problem:
In Fig. 4 we consider a scenario where a new client is
enrolled in the IPTV service under the “Normal” plan.
The new client H4 joined the network through router R6
and based on the SLA mapping, his/her packets receive
BE DSCP class. If the source sends a packet to all the

c© 2013 Information Processing Society of Japan 133

Journal of Information Processing Vol.21 No.1 131–144 (Jan. 2013)

Fig. 5 XCAST links exhibiting the allowable DSCPs.

hosts (H1...H4), then depending on the underlying rout-
ing protocol in the network and the entries in the rout-
ing tables of each of the routers, such a packet might
have three possible branching points; at routers R3 or
R5 or even on R7. In such a scenario, in addition to
the DSCP confusion problem mentioned above, a new
problem arises. Since host H1 is paying a premium rate
for the connections from the source all the way (we as-

sume the path to be R1→ R3→ R5→ R7→ H1), the
resource allocation for this path will be highly priori-
tized. The IPTV provider will not incur any additional
cost in delivering the XCAST packet up to router R7
(host H1 has paid for it). If XCAST packet replication
occurs at router R7, all the other hosts will be getting
the same treatment as H1 in terms of bandwidth (and

other resources) allocation as we later show in our sim-
ulation. Even (H4) who is paying for only a “Normal”
(BE) service will in the real sense be getting near pre-

mium services. This opens the network to a kind of at-
tack where a subset of clients collude to pay substan-
tially less amount for the best QoS services available,
leaving other unaware clients (Good Neighbors) to be
taking care of the other costs and both the “Good Neigh-

bors” and the IPTV Service Provider remain oblivious
of the unfolding scenario. This is called a collusion at-

tack (in this case all the other hosts H2...H4 can do that.

Hosts H2 and H3 can even reduce their SLAs with the

source to lower classes while still getting near premium

TV services).
An XCAST QoS provisioning scheme should therefore be

more efficient and ensure that at each given moment, receivers
actually get only what is acceptable within their respective SLAs
irrespective of their heterogeneity. Such a scheme would en-
sure that the links of the sample network exhibit DSCP-PHBs
as shown in Fig. 5.

2.3 Previous Work on XCAST QoS Provisioning
While alot of research in XCAST has been focusing on its

design, implementation and performance, not so much has been
done on QoS provisioning in XCAST. In Ref. [20], Siregar et al.,
also acknowledge the lack of previous work in XCAST QoS re-
search. However their work as well seems to only enumerate the
available QoS routing techniques for unicast and multicast and
then suggests that per-packet dynamic routing for unicast can be

used in XCAST but they do not show how this dynamic routing
should be adopted for XCAST. Nonetheless in Ref. [21], they
propose a new modified IPv6 extension header they call “IPv6

QoS header” which contains a QoS value. The QoS value is to be
calculated by routers based on the number of users underneath a
router, total users requesting the video streams and the available
priority levels. These values further depend on some probability
assignment. The prioritization based on the QoS levels and how
the probability values are calculated and allocated are however
not explained.

Since the XCAST header is already complex for existing
routers, adding another extension header for the purpose of QoS
provisioning is likely to impact negatively on XCAST perfor-
mance. We therefore propose to leave the XCAST header as
specified in the XCAST RFC [6] but use DiffServ architecture
for QoS provisioning.

2.4 Existing Multipoint DiffServ Solutions
In Section 8.3 of XCAST concepts and options [6], it is spec-

ified that an XCAST packet may contain a list of DSCPs so that
the DSCP of the packet is assigned to the most demanding DSCP
value from the list. However this specification does not take
care of what happens when the XCAST packet is replicated at
a branching router and the embedded list of destinations for a
given set of next-hops no longer require the higher level of QoS
that was embedded in the original IP header. The specification
also does not put in place mechanisms to ensure that nodes re-
ceive the exact QoS which is entitled to their “last-mile” link. It
is unlikely that all the receivers in the group will be willing to pay
for the highest level QoS which they receive when the DSCP of
the XCAST packet is assigned to be that of the most demanding
from the list. This leaves the current DSCP usage specification
in XCAST susceptible to collusion attack and DSCP confusion

problems explained above.
There are other research activities aimed at integrating Diff-

Serv into multipoint communication environments. An example
of the encapsulation based approach is DSMCast [22], [23] which
like XCAST eliminates the maintenance of per-session state in-
formation in the routers. However DSMCast works by construct-
ing a Tree Encapsulation Header (TEH) from the networks’ mul-
ticast tree information and then encapsulates the TEH into the IP
header. Additionally, in DSMCast, the TEH is limited to informa-
tion on the edge-routers alone and not the actual receivers. This
coupled with the fact that it relies on a multicast tree construc-
tion makes it not an applicable approach in integrating XCAST
in DiffServ networks. Furthermore, DSMCast’s approach is sus-
ceptible to collusion attack.

Other approaches still exist that aim at integrating DiffServ into
multipoint communication by maintaining the state-information
of the multicast trees in the core routers. This means that they
have a major limitation in terms of scalability since maintenance
of per-session state information increases the routers’ load pro-
portionately to the size of the multicast group. This also con-
travenes the DiffServ design philosophy of removing complexity
from the core of the network and pushing all such loads to the
edge network. Cui et al., proposed AQoSM [24] that uses the con-

c© 2013 Information Processing Society of Japan 134

Journal of Information Processing Vol.21 No.1 131–144 (Jan. 2013)

Fig. 6 A block summary of QoS-aware XCAST header.

cept of aggregated multicast but decouples group and distribution
tree concepts. AQoSM also proposes that admission control can
be carried out on the level of aggregated trees instead of being
done at individual links, thereby increasing efficiency due to the
statistical multiplexing of multiple groups on a single tree. Being
based on tree-group matching, AQoSM cannot be easily appli-
cable in an XCAST scenario that depends on a unicast routing
mechanism. Moreover, AQoSM depends on link-state collection
which undermines the DiffServ design principle of statelessness
at the core. Its dependence on a single tree also opens it up to the
collusion attack and DSCP confusion at the routers. AQoSM also
introduces the installation of a new component, the Tree Man-

ager, in a DiffServ network whose management and installation
process is likely to add some overheads in the DiffServ network.

Other solutions such as Harmonic DiffServ [25], DAM (Diff-
Serv Aware Multicasting) [26] and QMD (QoS-aware Multicas-
ting in DiffServ domains) [27] have been proposed but each of
them suffers from both the DSCP problems described above
and the complexity involved in state-information maintenance.
These approaches are therefore not easily adaptable for integrat-
ing XCAST in DiffServ networks.

We therefore propose a model for XCAST-DiffServ integra-
tion that not only seeks to solve the problems described above
but also relies on the existing XCAST concepts and options with
an enhanced resource management and admission control.

3. Scalable QoS-aware XCAST (QS-XCAST)

In order to integrate XCAST and DiffServ and to avoid the
problems mentioned above, we propose a new approach called
Scalable QoS-aware XCAST (QS-XCAST) and its implementa-
tion in IPv6 is codenamed QS-XCAST6. This approach is cog-
nizant of receivers’ QoS heterogeneity. It is based on dynamic
DSCPs and an algorithm for “request-grant” QoS control be-
tween the source and the receivers.

Our approach is based on a typical DiffServ network (like an

example in Fig. 5) comprising of all the essential DiffServ nodes
such as:
(1) A Bandwidth Broker
(2) Core routers
(3) Edge routers
(4) End hosts (senders and receivers)
Using this approach and XCAST specifications in Ref. [6], the
XCAST6 header will be as shown in Fig. 6. The DSCP class of
the XCAST packet is therefore determined by the DSCP value in
the outer IPv6 header.

3.1 Proposed Solution
(1) Dynamic DSCPs in the XCAST packet header: We propose

to extend the packet header processing in XCAST to allow
for adaptive re-writing of the DSCP field at the branching
routers. Therefore during packet replication in a branching
router, the bitmap is used to determine which corresponding
addresses in each copy of the packet the data is to be de-
livered and the respective DSCPs of these destinations are
evaluated to obtain a new QoS precedence order. The DSCP
fields of the packet copies where the new DSCP precedence
differs from the original DSCP value are then updated with
the new most demanding DSCP for each copy before the
copies are transmitted to their next-hop routers. This miti-
gates the DSCP confusion problem and eliminates the vul-
nerability to collusion attack. Since the DSCP check is done
at every branching router, we do not create two copies of
a packet unnecessarily. Therefore if the current branching
point is not the last branch on a path, the bandwidth is still
saved.

(2) Receiver initiated QoS Requests: We propose an approach
where a receiver can initiate the changing of its current QoS
level by sending a “QoS change” request to the Bandwidth
Broker [28]. In a commercial network this can simply be im-
plemented on a portal where customers choose various SLA
levels which are eventually communicated to the Bandwidth
Broker for consideration. The Bandwidth Broker knows the
topology and capacities of the links within its domain. The
Bandwidth Broker can therefore easily determine whether
to grant a receiver the requested QoS level or reject the re-
quest but provide an acceptable alternative QoS level. The
Bandwidth Broker (BB) maps the requested QoS level to
its corresponding DSCP-PHB class and keeps a record of
each receiver and its latest DSCP class assignment. This
record is updated regularly within a definite control period
(T) within which the receivers send feedback messages to the
Bandwidth Broker in order to allow the Bandwidth Broker to
keep-alive the receiver’s record. When a receiver leaves an
XCAST session, a timeout occurs i.e., the control period (T)
expires before the receiver sends the feedback message to
the Bandwidth Broker. The Bandwidth Broker then deletes
the record of the receiver’s current DSCP-PHB association.
Using this approach where the Bandwidth Broker is mod-
ified to also maintain a record of receivers and their latest
DSCP class assignments (QoS level) has the advantage that
when initiating traffic shaping and policing in an XCAST
session, the ingress edge-routers find it easy to know the
QoS requirements of all receivers of a given packet. They
can therefore determine the appropriate DSCP precedence
and mark the XCAST packet with the correct DSCP. This
way not only do we solve the architectural conflict between
DiffServ’s sender-driven QoS and XCAST’s receiver-driven

QoS control approaches but also ensure that by maintain-
ing the latest QoS requirements, we mitigate collusion attack
problems. This algorithm is summarized in Algorithm 2.

c© 2013 Information Processing Society of Japan 135

Journal of Information Processing Vol.21 No.1 131–144 (Jan. 2013)

Algorithm 1 Dynamic DSCP assignment algorithm
On receiving an XCAST packet:

(1) Obtain the current DSCP class of the packet. We call it the “original DSCP” class.

(2) Do a route table lookup and determine the next-hop for each of the embedded destination addresses.

(3) Partition the set of destinations based on their next-hops.

(4) Replicate the packet so that there is only one copy of the packet for each of the next-hops found in step 2 above.

(5) Modify the bitmap for the list of destinations in each of the packet copies so that the bitmap in a copy to any particular next-hop is set only for the

destinations that ought to be routed through that next-hop.

(6) If the “original DSCP” class was found to be “Best Effort” (DSCP value of “00000 ”) then go to step 8, otherwise process the next step.

(7) For each packet copy obtained from step 4 above:

(a) Obtain the highest DSCP class from the list of embedded DSCPs for which delivery is to be done so as to determine QoS Precedence. This is the

“new DSCP ” class.

(b) Update the DSCP field of the current packet copy to the “new DSCP ” obtained in (a) above.

(c) Continue to the next unprocessed packet copy.

(8) Send the modified copies of the packet on to the next-hops.

(9) If there is only one destination for a particular next-hop, the packet can be sent as a standard unicast packet to the destination (X2U).

Algorithm 2 Receiver initiated QoS level assignment algorithm
If a receiver wants to change its current QoS level:

(1) The receiver selects a preferred level (higher or lower than its current QoS assignment) from the list of QoS offered in the network.

(2) The receiver communicates the new QoS level to the Bandwidth Broker (BB).

(3) The BB verifies if there are adequate resources (e.g., bandwidth) along the receiver’s path that can serve the requested QoS level.

(4) The BB does a lookup in its map table for the entry of the receiver:

(a) If the receiver’s entry exists in the BB’s record and the resources are adequate for the requested QoS, the BB checks the DSCP mapping table for

the requested QoS level and updates the receiver’s DSCP class in the table.

(b) If the receiver’s entry exists in the BB’s record but resources are inadequate, the BB determines the acceptable QoS level and updates the receiver’s

table with the DSCP class matching this new acceptable QoS level.

(c) If the receiver’s entry does not exist in the BB’s table, the BB creates a new entry for the receiver with an appropriate QoS level.

(d) The BB notifies the receiver of the assigned QoS level.

(5) The receiver sends an acknowledgment to the BB.

(6) The BB notifies the edge routers of the latest policy changes.

(7) Edge routers update their traffic shaping and policy rules to reflect the latest policies from the BB.

3.2 Algorithms for the Proposed Solutions
3.2.1 The Extended XCAST Processing Algorithm

For solution (1) in Section 3.1 above, we modify the XCAST
processing algorithm at the routers according to Algorithm 1.
When used with the QoS network in Fig. 5, each of the hosts
(H1...H4) end up receiving the QoS level requested as shown by
the colour of their corresponding arrows in the figure. Even if a
client attempts to downgrade their current QoS level, they cannot
end up paying less for a higher QoS since the algorithm adapts to
the latest QoS level as obtained from the embedded DSCP corre-
sponding to each receiver at any branching point in the XCAST
network.
3.2.2 Receiver Initiated QoS Level Assignment

RFC2638 [28] defines the Bandwidth Broker (BB) as an agent
in a DiffServ network that has some knowledge of an organiza-
tion’s priorities and policies and allocates QoS resources with re-
spect to those policies. Admission control is therefore one of
the key roles of the BB in a DiffServ network. The BB acts
as a Policy Decision Point (PDP) in deciding whether to allow
or reject a flow, whilst the edge routers act as Policy Enforce-
ment Points (PEPs) for policing the traffic (allowing and marking
packets, or simply dropping them). Therefore in solution (2) of
Section 3.1 above, we propose an algorithm that controls moni-
toring of changes in a receivers’ QoS requirements thereby letting
the receiver to request the BB to appropriately allocate QoS re-

sources dynamically in a given DiffServ domain. The proposed
algorithm is summarized in Algorithm 2.

4. Simulations and Results

We implemented our proposal in a simulation environment and
used the simulation model to evaluate the proposal. The metrics
on the receivers are throughput, average per-hop delay and link
utilization. To investigate the impact of this model on DiffServ
routers, buffer evolution was also investigated and used to infer
the router’s traffic load and forwarding fairness to other proto-
cols. We also evaluate the model to verify that our approach elim-
inates the collusion attack problem.

4.1 Simulation Model
The proposed QoS aware XCAST is tested using OMNeT++

simulation tool [16], [17], [29]. OMNeT++ currently does not
have inbuilt XCAST header encapsulation and routing models.
However, previously [9], we gave a detailed description on how
to integrate XCAST6 into OMNeT++. Additionally the basic
DiffServ in OMNeT++ only has a simple classifier that classifies
packets into only two classes but several other DiffServ compo-
nents are missing. We therefore implemented our own full Diff-
Serv architecture for OMNeT++. Using OMNeT++, we model
an IP Television (IPTV) service provider network organized hi-
erarchically such that the core routers form the provider’s back-

c© 2013 Information Processing Society of Japan 136

Journal of Information Processing Vol.21 No.1 131–144 (Jan. 2013)

Table 1 Simulation parameters.

Simulation parameter Value
Message size 1,450 Bytes
Message frequency 50 ms
Queueing scheme Shown in Tables 2 and 3
Max Queue capacity 20 MB
MAC Tx rate 100 Mbps
Background Traffic frequency 50 ms

Table 2 DSCP allocation and buffering schemes.

IPTV plan DSCP Class Metering and buffering schemes
Super-platinum EF Drop-Tail with a leaky bucket
Platinum AF11 RIO1 queue with token bucket
Gold AF21 RIO queue with token bucket
Silver AF31 RIO queue with token bucket
Bronze AF41 RIO queue with token bucket
Normal BE RIO queue with token bucket

1 RED (Random Early Detection) with distinction of In-profile and Out-profile packets

Fig. 7 Model network for IPTV Service.

bone network while the edge routers form the points where IPTV
clients are hooked onto the network similar to the illustration in
Fig. 7. Our model network comprises of 29 routers divided into
13 core routers and 16 edge routers (each edge router in its own
subnet). Each edge router is connected to 5 hosts. One host is the
source that sends data to all other remaining hosts in the entire
network. The basic parameters are summarized in Table 1.

In addition to IPTV (UDP) messages, a background non-
XCAST TCP traffic is also run in the network and processed by
all nodes. Interconnections between core routers are restricted to
a degree of not more than five per router. For pricing, bandwidth
allocation and Service Level Agreements (SLAs) purposes, the
IPTV services are offered in six plans namely: Super-platinum,

Platinum, Gold, Silver, Bronze and Normal. The service plans
are mapped onto the DiffServ architecture’s DSCP Per-Hop-
Behaviours as shown in Table 2. Bandwidth allocation thresh-
old is 35% for EF class (Super-platinum), 55% for all AF traf-
fic (Platinum, Gold, Silver and Bronze) since they use the same
buffer model and 10% for Normal.

All receivers are assigned various DSCP classes selected from
a pool of six DSCPs explained above. This is to conform with
a typical IPTV subscription service in which each client is pro-
vided with the services at an agreed SLA. The DSCP is assigned
statically at load time for each receiver. In Section 4.1.1 we elab-

orate on the implementation of DiffServ metering and buffering.
The receivers are distributed in different subnetworks. During the
experiment, for each metric, we varied the number of receivers
(“group size”) ranging from 10 to 75 hosts and ten simulation
runs were conducted for each group size. Thereafter average val-
ues from all the runs were calculated.
4.1.1 DiffServ Parameters

We implemented packet metering to check on in-profile and
out-profile packets using leaky bucket [30] and token bucket [30]
algorithms for EF and AF traffic classes respectively. This is
because EF traffic should not allow for traffic burstiness while
AF traffic can allow for burstiness. The EF buffer implementa-
tion was realized using a Drop-tail [30] queue with leaky bucket
while RIO queues [30] with token buckets were used for all the
AF classes and the BE class.

Parameters for these data structures are shown in Table 3.
RIO queue implementation was a little complex because we had
to specify both minimum and maximum thresholds and the cor-
responding “drop probabilities” for all the AF classes and the
BE class. In our implementation, dropping of packets is only
done when the lowest, i.e BE, queue is full, hence the term, “re-

scheduling probability” used in Fig. 8 (a) instead of “drop proba-

bility”. We have an array of “RIO queues” as shown in Fig. 8 (b).
For a RIO queue at index (i), (i=0,...,4) in the array, if the queue
length exceeds the minimum threshold TMin x1, (x=1,...,4), the
new “AFx1” packets are scheduled in a lower queue at index (i+1)
of the array, with an increasing probability up to Px1. When the
queue length exceeds the maximum threshold TMax x1 and the cur-
rent queue is not the last one in the array, all new “AFx1” packets
are scheduled in a lower queue at index (i+1). If the current index
(i) is the last one in the array then the packets are dropped.
4.1.2 Path Construction and Packet Delivery to Receivers

XCAST does not depend on delivery tree construction. In-
stead, as specified in Sections 3 and 4 of XCAST RFC docu-
ment [6], XCAST packets always take the “right” path as deter-
mined by the unicast routing table. This implies that data delivery
in an XCAST network is affected by the state of the routing ta-
bles of each intermediate node an XCAST packet passes through.
In our model, the routing table of each node was initially con-

c© 2013 Information Processing Society of Japan 137

Journal of Information Processing Vol.21 No.1 131–144 (Jan. 2013)

Table 3 DiffServ metering and scheduling parameters.

Queue model Queue Parameters Parameter values

Leaky Bucket
Token rate (Bytes/sec) 100,000
Bucket depth (Bytes) 200,000

Token Bucket
Token rate (Bytes/sec) 100,000
Bucket depth (Bytes) 400,000

RIO queue
Queue size (Bytes) 500,000
Probabilities (Px1)1 0.5, 0.6, 0.7, 0.8, 0.9

Thresholds (TMin x1,TMax x1)2 0.9,1.0; 0.8,0.95; 0.7,0.95; 0.6,0.97;
0.5,1.0

1 For AFx1, x=1,...,4. The last probability value is for BE.
2 Semicolons separate min, max pair for each class. The last pair is for BE.

(a) RIO Algorithm (b) Metering and scheduling

Fig. 8 Implementation of DiffServ in model routers.

structed using a NETCONF [31], [32] based XML file. We added
methods in the “RoutingTable6 ” module of OMNeT++ which
parse the XML file based on NETCONF XML DTDs [31]. The
NETCONF-XML file is filled with all possible paths within the
mesh of nodes that forms the simulation model and OMNeT++’s
“RoutingTable6 ” module loads these into the model at the initial-
ization stage of the model. Additionally, the model IPv6 routers
used in the simulation send out router advertisement (RA) mes-
sages at regular intervals to all their adjacent neighbours which
the recipient routers then use to update their routing table infor-
mation. This therefore ensures that at any given moment in time,
the routing table of each of the model routers is up to date and
the most optimal path is used to deliver both XCAST and unicast
data to any particular receiver.
4.1.3 Receiver Handling in XCAST6 and QS-XCAST6

XCAST6 is primarily designed for small group sizes hence
group membership is usually limited. As specified in Sec-
tion 9.3.2.1 of the XCAST RFC document [6], the destination ad-
dresses are embedded within the IPv6 routing extension header.
The IPv6 routing extension header length is expressed in 8-octets
thus the theoretical upper bound of the number of XCAST6 des-
tinations (group membership) is up to 127 receivers. In practice
however, the possible number of receivers can be much less de-
pending on the configuration of the MTU of routers in the net-
work. This is because, the entire packet length also includes the
data payload. The length of the data payload therefore affects
how many destinations can be embedded within the IPv6 rout-
ing extension header without realizing IP fragmentation due to
router MTU size limitations which is usually up to 1,500 Bytes.
In our case, we embedded up to 75 destinations with a payload
data of approximately 256 Bytes hence the total message length

Fig. 9 Service differentiation verification using a group of 30 receivers.

was 1,450 Bytes.
4.1.4 Model Verification for DiffServ Functionality

We first verified QS-XCAST6 service differentiation using the
model and a group size of 30 receivers and plotted the observa-
tions in Fig. 9. The model starts with 30 BE receivers and after
20 seconds 15 BE receivers change their QoS level to AF21 us-
ing the algorithm in Algorithm 2. After 50 seconds the hosts are
further changed such that we have 10 receivers for BE, AF21 and
EF respectively. After 100 seconds we revert to the original state.

Service differentiation is confirmed as required since the lower
priority traffics are seen to reduce as expected whenever a higher
priority traffic is injected into the network. This shows that each
class is scheduled in its own independent queue. The BE actually
rises after 100 seconds when we remove both EF and AF21 re-
ceivers and replace them with BE receivers. We then proceeded to
investigate the model using various metrics as explained in Sec-
tion 4.1.

c© 2013 Information Processing Society of Japan 138

Journal of Information Processing Vol.21 No.1 131–144 (Jan. 2013)

Fig. 10 Comparative average throughput.

Fig. 11 Comparative average per-hop delay.

4.2 Average Throughput
The values of average throughput presented in Fig. 10 and

those of average per-hop delay (Fig. 11 of Section 4.3) were cal-
culated by summing up the observed data in every corresponding
DSCP class under each group size (10...75) and then dividing the
total by the number of groups used (8 in this case). For example
the EF values in Fig. 10 are averages of all EF observations for
eight different group sizes varied from a group size of 10 to 75
receivers for both XCAST6 and QS-XCAST6.

In Fig. 10, in all cases except for the EF DSCP class, XCAST6
yields a higher throughput. This is because XCAST6 sends data
to all the receivers in one packet and the DSCP of the XCAST6
packet is set to that with the highest priority from the list of
DSCPs of the receivers hence even the lower priority DSCP
classes get near-optimal treatment. However in XCAST6, the EF

DSCP class suffers a little reduction in throughput and a longer
delay when compared to the corresponding values in unicast and
QS-XCAST6. This is because some of its resources are shared
with the lower classes.

Unicast on the other hand, treats each of the DSCP-PHBs in-
dependently, therefore its EF class does not share any resource
with lower DSCP classes. QS-XCAST6 finds a middle ground
between these two extremes by ensuring that in as much as the
data is delivered in one packet, each class still gets an appro-
priate treatment. Therefore the lower DSCP classes do not get
near Super-platinum services that they are not paying for and the
higher priority class does not suffer extensively due to the lower
priority classes.

Fig. 12 Collusion attack example in a group of 6 hosts.

4.3 Average Per-hop Delay
The method used for getting average per-hop delays for each

DSCP class is the same as the approach used in calculating aver-
age throughput in Section 4.2 above. As illustrated by Fig. 11, the
average per-hop delay for all the DSCP classes reflects the dis-
parity in DSCP treatment by each of the investigated protocols.
XCAST6 still out-performs all the others hence the the lower pri-
ority DSCP classes still get very minimal delay compared to the
same values registered by the other two protocols for each cor-
responding DSCP class. Figure 11 shows that for XCAST6, de-
lays of all other classes tend to coalesce around that of EF traffic

but for Unicast traffic each class is more distinct. QS-XCAST6
again finds an optimal middle ground for these cases ensuring
that each class is treated fairly in accordance with its defined Per-
Hop-Behavior. QS-XCAST6 achieves this by ensuring that dur-
ing replication of XCAST6 packets at the branching routers, each
copy is placed in its appropriate DSCP queue.
4.3.1 Elimination of DSCP Confusion and Collusion Attack

Collusion attack exploits the possibility of low priority class of
packets being treated at a higher priority in routers. In such case,
the customers located downstream in the delivery path and are
on lower priority SLAs collude to get better services but pay less.
We use a sample network in Fig. 12 to show how this happens and
how it is mitigated in QS-XCAST6. Each of the hosts (H1 to H6)
is assigned DSCP classes that correspond to their SLAs as speci-
fied in their corresponding labels. The simulation is scheduled to
run for 100 seconds then a measurement of throughput values on
each host is taken. At this point, the DSCP values of hosts H2, H3

and H5 are reduced to BE class (Normal plan) using the receiver
initiated QoS SLA assignment algorithm in Table 2. The model
is then let to run for another 100 seconds before a second mea-
surement of throughput values is taken. The results are plotted in
Fig. 13.

As shown in Fig. 13 (a), for XCAST6, all the hosts receive
nearly the same amount of throughput irrespective of their DSCP
classes. Throughput values for lower DSCP classes tend to coa-
lesce around that of the EF class. This is because for XCAST6
even after replication, the packet copies still have the EF DSCP as
the effective value. In QS-XCAST6 on the other hand, throughput
values on each of the host is distinct and obeys the required DSCP
precedence. This is because QS-XCAST6 dynamically re-writes
the DSCP at every replication point according to the SLAs. Fig-

c© 2013 Information Processing Society of Japan 139

Journal of Information Processing Vol.21 No.1 131–144 (Jan. 2013)

(a) (b)

Fig. 13 Throughput values for a group of 6 hosts: a). Values with initial DSCP assignments. b). Values
after H2, H3 and H5 have lowered their DSCP requirements to “Normal ” (BE class).

Fig. 14 Comparative average link utilization.

ure 13 (b) shows that in XCAST6, even after changing the DSCP
values of H2, H3 and H5 to BE (“Normal ”) after the first 100 sec-
onds, they still continue to receive the packets at EF level hence
H2, H3 and H5 can easily collude to subscribe at BE level (and
pay less) yet in the real sense they continue receiving near Super-

platinum services. For QS-XCAST6, Fig. 13 (b) shows that the
throughput values of H2, H3 and H5 change to that of the BE
level. This is because on replication, QS-XCAST6 places each
copy of the packet in its appropriate queue thereby eliminating
DSCP confusion which also eliminates any possibility of collu-
sion attack.

4.4 Average Link Utilization
The link utilization statistics considers both the UDP traffic (for

IPTV simulation) and the background TCP traffic in the network.
The average values plotted in Fig. 14 were calculated from all
group sizes (10 to 75) using the same approach explained at the
beginning of Section 4.2. Unicast link utilization was found to be
so high; more than double for BE at about 68% and more than
90% for EF. Hence they do not compare well in the same graph
with the XCAST6 and QS-XCAST6. We attribute this high link
utilization by unicast to the fact that unicast has to send several
successive packets for each receiver unlike XCAST that sends
out the data to all receivers in only one packet. From Fig. 14
it is observed that QS-XCAST6 ensures greater bandwidth effi-
ciency than XCAST6. For every DSCP class, XCAST6 utilizes
more bandwidth on the final links (“last mile”) to each receiver
than does QS-XCAST6. This is because by dynamically assign-

Fig. 15 Throughput for varying group sizes.

ing DSCP values, QS-XCAST6 ensures that each host gets data
at an agreed SLA even though the data to all receivers are trans-
mitted in one packet. XCAST6 on the other hand delivers data at
the highest priory DSCP since the DSCP fields of all the copies of
the packet to all receivers are set to be that of the most demanding
receiver.

QS-XCAST6 therefore proves to be an efficient method for
IPTV data delivery compared to XCAST6 since for any given link
with a definite bandwidth allocation, when using QS-XCAST6
the amount of bandwidth consumed is lower. This implies that
for the constant bandwidth value on a link in the network, the re-
maining unconsumed bandwidth under QS-XCAST6 can still be
utilized in connecting more clients than when XCAST is used.
Therefore, from a service provider’s point of view, QS-XCAST6
is very cost effective and serves all clients efficiently and reliably.

4.5 Effect of the Group Size
This comparison is done between XCAST6 and QS-XCAST6

and in order to enhance legibility, we plotted results of only 3
DSCP classes (EF, AF21 and BE) for each protocol.
4.5.1 Effect on Throughput

For both protocols, as the group size increases, throughput de-
creases marginally. This is illustrated in Fig. 15. XCAST6 reg-
isters a marginally higher performance than QS-XCAST6. QS-
XCAST6 gives a clear distinction in throughput between the var-
ious QoS levels as noted especially by the wider difference in
throughput values for EF and BE in QS-XCAST6. QS-XCAST6
thus gives the benefit of ensuring that each DSCP class gets its

c© 2013 Information Processing Society of Japan 140

Journal of Information Processing Vol.21 No.1 131–144 (Jan. 2013)

Fig. 16 Average per-hop delay for varying group sizes.

Fig. 17 QoS provisioning in multiple DiffServ domains.

corresponding treatment as defined by the Per-Hop-Behaviour
hence it introduces QoS awareness to XCAST6.
4.5.2 Effect on Average Per-hop Delay

Effect of an increase in the members in a group on the average
delay for both protocols mirrors that of throughput. Once again,
QS-XCAST6 shows a clear difference between the QoS classes
in terms of their average per-hop delay. Hence each DSCP class
is handled according to its respective priority level as shown in
Fig. 16.

4.6 Scalability: Effects of the Network Scale
In instances like the Internet where QoS provisioning needs

to span multiple DiffServ domains, in order to achieve an end-
to-end allocation of resources across the separate domains, the
Bandwidth Broker managing a domain will have to communicate
with its adjacent peers. This allows end-to-end services to be
constructed out of bilateral agreements as shown in Fig. 17.

An end system initiates a request for service to its domain’s
Bandwidth Broker (BB) with a fully-specified destination address
of the intended receivers of the service. The local Bandwidth
Broker realizes that the request is for a host in another DiffServ
domain and requests the service to another domain. In the transit
domain, this is in effect a pipe to another domain where the desti-
nation host is located. The Bandwidth Broker (BB), of the host’s
domain receives the request and liaises with the host to determine
its QoS level. Then the request is sent back to the original domain
via the transit domain. The Bandwidth Broker of the end system
that initiated the request forwards the verified QoS requirements
of the intended recipient and then the service delivery can be-
gin. In this test, we compare cases where this request to initiate a

Fig. 18 Time taken to receive Resource Allocation Answer (RAA) message.

QoS service delivery over multiple DiffServ domains is done via
XCAST6 (same for QS-XCAST6) and when it is done via unicast
for varying number of intended recipients.

The request messages are referred to as Resource Allocation

Requests (RAR) and their answer messages as Resource Alloca-

tion Answer (RAA). Since at this stage the RAR and RAA mes-
sages are of the same priority (DSCP value), it does not matter
whether we use QS-XCAST6 or XCAST6. Figure 18 shows the
time it takes to receive the RAA message so that data delivery can
begin for various group sizes (for unicast we track the nth RAA

for a group of n members). Since XCAST6 out-performs unicast,
integration of XCAST would be really beneficial for QoS aware
implementations spanning multiple DiffServ domains.

4.7 Impact on DiffServ Routers
In DiffServ, the edge routers act as policy enforcement points.

They typically classify incoming packets into pre-defined aggre-
gates, meters them to determine compliance to traffic parameters,
marks them appropriately by writing (or re-writing) the DSCP
values and shapes (buffers the packets to achieve a target flow
rate) or drops the packets in an event of congestion. We assessed
the impact of our proposal on DiffServ routers by analyzing the
buffering patterns of ingress edge routers and core routers under
both XCAST6 and QS-XCAST6 traffic. We plotted the results as
shown in Fig. 19.

The number of buffered packets under XCAST6 remains
higher than those under QS-XCAST6. For both protocols, buffer-
ing in edge routers is less than that of core routers. Interpretation
of buffer evolution can be two fold in terms of: the impact on
router’s traffic load and that of forwarding fairness to other pro-
tocols.
4.7.1 Impact on Traffic Load

Traffic load can be defined as the ratio of incoming traffic to
outgoing traffic in a router [33]. This way, buffering can be as-
sumed to be directly proportional to a router’s load size. Inter-
preting results of Fig. 19 in this context, we can conclude that
QS-XCAST6 adds less traffic load than XCAST6 to a DiffServ
router.
4.7.2 Impact on Forwarding Fairness to Other Protocols

If we interpret the buffer evolution pattern in Fig. 19 in
conjunction with observations made in Figs. 10 and 11 where
XCAST6 registers higher throughput and lower average per-

c© 2013 Information Processing Society of Japan 141

Journal of Information Processing Vol.21 No.1 131–144 (Jan. 2013)

(a) Edge routers’ buffer evolution (b) Core routers’ buffer evolution

Fig. 19 The impact of XCAST6 and QS-XCAST6 on DiffServ routers.

Table 4 Comparative bandwidth allocation for XCAST6 and QS-XCAST6 using 100 MB

IPTV plan DSCP
Class

Bandwidth
Allocation (%)

QXG QS-XCAST6 Bandwidth
Estimate

Super-platinum EF 35 0.999 35.04
Platinum AF11 18 1.117 16.11
Gold AF21 14 1.148 12.20
Silver AF31 12 1.167 10.28
Bronze AF41 11 1.213 9.07
Normal BE 10 1.253 7.98
Total 100 90.68

hop delay compared to QS-XCAST6, we conclude that most
of the buffered packets are for the background TCP traffic run-
ning in the model. This is clearer if we consider that the back-
ground traffic here represents the standard (non-prioritized) pack-
ets thereby being buffered in the BE queue. This buffer evolution
pattern points to the fact that QS-XCAST6 is likely to realize
better “packet forwarding fairness” than XCAST6 between real-
time (prioritized) and standard (non-prioritized) traffic in the net-
work since its buffering effects on the standard traffic is less than
that of XCAST6.

4.8 Other Effects of Our Solution
(1) Header size and packet length: Embedding the list of des-

tinations and their corresponding DSCP classes in the IP
packet header increases the header size. This in turn in-
creases possibilities of IP fragmentation problems. As ob-
served in our case where according to XCAST RFC docu-
ment [6], we can embed up to 127 unicast addresses but in
practice this number is affected by the length of the payload
data too. Therefore we were able to simulate with up to 75
destinations without breaching the router interfaces’ MTU
limits. To mitigate IP fragmentation problems, QS-XCAST6
could be combined with the G-XCAST solution [34] to en-
sure the group sizes are small enough to pass within the
MTU limits.

(2) DSCP field modification: In order to reduce overheads re-
lated to DSCP processing, we limit the DSCP processing to
simple comparison and update is done only on the DSCP
field of the IP header and not on the entire list of the embed-
ded DSCPs. The alteration of the DSCP field however might
bring challenges in situations where IPsec is to be used with
QS-XCAST.

(3) Feedback implosion: The communication of bandwidth re-

quirements by receivers to the source needs to be done in a
way that ensures that the source is not overwhelmed by such
messages. Approaches such as exponentially distributed
timers [35] can be implemented between the receivers and
the source. This potentially avoids the feedback implosion
and enhances the scalability of bandwidth requirements han-
dling at the source even for larger groups.

4.9 Further Discussion on Practicality
QS-XCAST6 can be used to improve on flexibility and effi-

ciency of bandwidth allocation. If providers use QS-XCAST6 for
delivery of real-time traffic, they can take advantage of the fact
that the various IPTV plans have varying bandwidth thresholds
to economize on bandwidth utilization on any given link. As an
example, we use bandwidth allocation thresholds as shown in the
second column of Table 4 for each DSCP class and define a new
ratio called “QS-XCAST Gain”, (QXG) to determine the savings
that can be realized using QS-XCAST6. We also use a scenario
where the allocation is to be done for 100 MB on a given link.
“QS-XCAST Gain”, (QXG) is defined using formula (1) as the
gain for different traffic loads in terms of the bandwidth required
by XCAST6 (Bw XCAST6) divided by the bandwidth required by
QS-XCAST6 (Bw QSXCAST6) to achieve the same QoS Service
Level Agreement.

QXG =
Bw XCAS T6

Bw QS XCAS T6
(1)

For the purpose of this illustration, we calculate QS-XCAST

Gain as shown in Table 4 based on the link utilization results ob-
served in Fig. 14 (Section 4.4).

From a bandwidth of 100 MB on a link, if we apply the indi-
cated bandwidth allocation policy for each DSCP class and use
QS-XCAST6, we obtain an estimated bandwidth utilization of
90.68 MB saving the rest due to QS-XCAST Gain as shown in

c© 2013 Information Processing Society of Japan 142

Journal of Information Processing Vol.21 No.1 131–144 (Jan. 2013)

Table 4. The saved bandwidth can be used for deploying other
services hence ensuring efficient and economical bandwidth uti-
lization. However, we note that the exact bandwidth economy re-
alized by any IPTV service provider while using either XCAST6
or QS-XCAST6 is dependent on the ratio of the real-time traffic
to the standard traffic in the network and also on the threshold al-
locations per given DSCP class. The lower the ratio of real-time
to standard traffic, the higher the QS-XCAST6 gain and hence the
better the performance of QS-XCAST6.
4.9.1 QS-XCAST6 Effect on Router Performance

Having run this on a simulation environment, we have not been
able to investigate the impact of QS-XCAST6 on the router’s
CPU and Memory utilization. However in Section 4.7, we in-
vestigated possible impact on a DiffServ router’s buffering pat-
tern for both edge and core routers where we observed that QS-
XCAST6 has lower buffering effects than XCAST6. If applying
QS-XCAST6 impacts negatively on a router’s forwarding per-
formance then the router will support less aggregate throughput.
However, today’s commercial routers typically implement Diff-
Serv Per-Hop-Behaviours in ASICs [36] thereby ensuring that
there is no forwarding penalty associated with DiffServ imple-
mentation.

5. Conclusion and Further Work

This paper proposes a model for providing Quality of Ser-
vice (QoS) in XCAST using DiffServ. We explore the vari-
ous challenges that complicate integration of XCAST and Diff-
Serv. We then show how to overcome the challenges and test
our proposal by simulation using OMNeT++. Our proposed
QoS-aware XCAST6 (QS-XCAST6) proves to be very efficient
when it comes to bandwidth utilization, out-performing the cur-
rent XCAST6 thereby proving to be very conducive for offer-
ing services such as IPTV using XCAST6. QS-XCAST6 also
impacts less on DiffServ router buffering patterns compared to
XCAST6, showing a better fairness to non-priority traffic when
compared to XCAST6. QS-XCAST6 only registers a slight drop
in throughput compared to XCAST6 but ensures that all clients
get the services at the agreed SLA. XCAST6 on the other hand
allows even lower priority clients to enjoy better services than
what they are paying for thereby ending up consuming more
bandwidth than ought to have been the case. XCAST6 also leaves
the network vulnerable to collusion attack which QS-XCAST6
totally eliminates. We therefore find that QS-XCAST6 is prefer-
able for commercial service provision like in IPTV scenarios. In
addition to this simulation framework, we have also implemented
an experimental testbed for XCAST6 Routing Engine [14]. As
further work, we shall be implementing the DiffServ architec-
ture including Bandwidth Broker functionalities for use with the
XCAST6 Routing Engine to allow for testing XCAST QoS in a
real network environment.

References

[1] Blake, S., Black, D., Carlson, M., Davies, E., Wang, Z. and Weiss, W.:
An Architecture for Differentiated Services, RFC 2475 (1998).

[2] Nichols, K., Blake, S., Bakers, F. and Black, D.: Definition of the Dif-
ferentiated Services Field (DS Field) in the IPv4 and IPv6 Headers,
RFC 2474 (1998).

[3] Davie, B., Charny, A., Bennett, J., Benson, K., Boudec, J.L., Courtney,
W., Davari, S., PMC-Sierra, Firoiu, V. and Stiliadis, D.: An Expedited
Forwarding PHB (Per-Hop Behavior), RFC 3246 (2002).

[4] Heinanen, J., Finland, T., Baker, F., Weiss, W. and Wroclawski, J.:
Assured Forwarding PHB Group, RFC 2597 (1999).

[5] Grossman, D.: New Terminology and Clarifications for Diffserv, RFC
3260 (2002).

[6] Boivie, R., Feldman, N., Imai, Y., Livens, W. and Ooms, D.: Explicit
Multicast (Xcast) Concepts and Options, RFC 5058 (2007).

[7] Imai, Y.: BSD implementations of XCAST6, Proc. ASiaBSDCon2008
Tokyo (2008).

[8] Abade, O.E., Kaji, K. and Kawaguchi, N.: Design, Implementation
and Evaluation of a Routing Engine for a multipoint communication
protocol: XCAST6, International Journal of Computer Science and
Network Security, Vol.11, No.5, pp.200–209 (2011).

[9] Abade, O.E., Kaji, K. and Kawaguchi, N.: Quantitative Simulation of
XCAST6 Performance Using OMNeT++, Proc. Asian Internet Engi-
neering Conference, AINTEC’11, Bangkok, Thailand (2011).

[10] Bag-Mohammadi, M., Yazdani, N. and Samadian-Barzoki, S.: On the
Efficiency of Explicit Multicast Routing Protocols, Proc. 10th IEEE
Symposium on Computers and Communications (2005).

[11] Bag-Mohammadi, M. and Yazdani, N.: A Fast and Efficient Explicit
Multicast Routing Protocol, IEICE Trans. Communications, Vol.E88,
No.10, pp.4000–4007 (2005).

[12] Imai, Y., Kurosawa, T. and Muramoto, E.: XCAST6 (version 2.0)
Protocol Specification, Internet Draft, draft-ug-xcast20-protocol-spec-
00.txt (2008).

[13] Alzyoud, F.Y., Wan, T.-C. and Mohamad, I.J.: The Effect of Using
XCAST Based Routing Protocol in Wireless Ad Hoc Network, IEEE
TENCON 2009 (2009).

[14] Abade, O.E., Kawaguchi, N., Imai, Y., Kurosawa, T. and Muramoto,
E.: Design and Implementation of an XCAST6 Routing Engine, Inter-
net Draft, draft-abade-xcast20-routing-engine-spec-00.txt (2009).

[15] Strigel, A. and Manimaran, G.: A Survey of QoS Multicasting Issues,
IEEE Communications Magazine, pp.82–87 (2002).

[16] Varga, A.: Omnet++ community site, OMNeT++ (online), available
from 〈http://www.omnetpp.org〉 (accessed 2011-07-05).

[17] Varga, A.: The OMNeT++ Discrete Event Simulation System, Proc.
European Simulation Multiconference, pp.319–324 (2001).

[18] Deering, S., Estrin, D., Farinacci, D., Jacobson, V., Liu, C. and Wei,
L.: The PIM architecture for wide-area multicast routing, IEEE/ACM
Trans. Networking, Vol.4, No.2 (1996).

[19] Waitzman, D., Partridge, C. and Deering, S.: Distance Vector Multi-
cast Routing Protocol, RFC 1075 (1998).

[20] Siregar, L., Budiarto, R., Omar, M. and Rosli, A.: Quality of Service
Performance for Xcast in IPv6 Network, Proc. DFmA 2008 (2008).

[21] Siregar, L., Aji, R., Hasibuan, Z. and Budiarto, R.: Quality of Service
For IPTV Using Xcast in IPv6 Network, Proc. NETAPPS 2010 (2010).

[22] Strigel, A. and Manimaran, G.: A scalable approach for DiffServ mul-
ticasting, IEEE International Conference on Communications, Vol.8,
No.6, pp.2327–2331 (2001).

[23] Strigel, A. and Manimaran, G.: DSMCast: A Scalable Approach for
DiffServ Multicasting, Computer Networks, Vol.44, No.6, pp.713–735
(2004).

[24] Cui, J.-H., Lao, L., Faloutsos, M. and Gerla, M.: AQoSM: Scal-
able QoS multicast provisioning in DiffServ networks, Computer Net-
works, Vol.50, pp.80–105 (2006).

[25] Tong, S.-R. and Chang, C.-C.: Harmonic DiffServ: Scalable support
of IP multicast with QoS heterogeneity in DiffServ backbone net-
works, Computer Communications, Vol.29, pp.1780–1797 (2006).

[26] Yang, B. and Mohapatra, P.: Multicasting in Differentiated Service
domains, Proc. IEEE GLOBECOM (2002).

[27] Li, Z. and Mohapatra, P.: QoS-aware multicasting in DiffServ do-
mains, Proc. Global Internet Symposium (2002).

[28] Nichols, K., Jacobson, V. and Zhang, L.: A Two-bit Differentiated
Services Architecture for the Internet, RFC 2638 (1997).

[29] Varga, A.: The INET Framework Project site, OMNeT++ (online),
available from 〈http://inet.omnetpp.org〉 (accessed 2011-07-05).

[30] Evans, J. and Filsfils, C.: Deploying IP and MPLS QoS for Multiser-
vice Networks: Theory and Practice, Morgan Kaufmann, San Fran-
cisco, CA 94111 USA (2007).

[31] Enns, R., Bjorklund, M., Schoenwaelder, J. and Bierman, A.: Network
Configuration Protocol (NETCONF), RFC 6241 (2011).

[32] Shafer, P.: An Architecture for Network Management Using NET-
CONF and YANG, RFC 6244 (2011).

[33] Singh, K.: Router Buffer Traffic Load Calculation based on a TCP
Congestion Control Algorithm, International Journal of Computa-
tional Engineering & Management, Vol.15, No.1, pp.20–23 (2012).

[34] Boudani, A., Guitton, A. and Cousin, B.: GXcast: Generalized Ex-
plicit Multicast Routing Protocol, Proc. International Symposiym on

c© 2013 Information Processing Society of Japan 143

Journal of Information Processing Vol.21 No.1 131–144 (Jan. 2013)

Computers and Communications, (IEEE ISCC 2004) (2004).
[35] Nonnenmacher, J. and Biersack, E.W.: Scalable Feedback for Large

Groups, IEEE Trans. Networking, Vol.7, No.3, pp.375–386 (1999).
[36] Filsfils, C. and Evans, J.: Deploying DiffServ in Backbone Net-

works for Tight SLA Control, IEEE Internet Computing, Vol.15, No.1,
pp.58–65 (2005).

Odira Elisha Abade received a B.Sc. in
Computer Science and a Master of Engi-
neering in Information and Communica-
tion Engineering degrees from the Univer-
sity of Nairobi, Kenya and Nagoya Uni-
versity, Japan in 2005 and 2010 respec-
tively. During 2005–2006, he worked
with Huawei Technologies Co. Ltd in the

Intelligent Networks division. He later joined the University of
Nairobi in software technology services. He is currently a Ph.D.
student at the Graduate school of Engineering, Nagoya Univer-
sity. His research interests include high availability networking,
network security, mobile and wireless networks, mobile ad hoc
networks and mobile IP communication and electronic money in
e-commerce and m-commerce.

Katsuhiko Kaji received his B.S., M.S.
and Ph.D. degrees in Information Sci-
ence in 2002, 2004 and 2007 respectively
from Nagoya University. He was with
NTT Communication Science Laborato-
ries, Japan, as a research associate from
2007 to 2010. From 2010, he has been an
assistant professor in the Graduate School

of Engineering, Nagoya University.

Nobuo Kawaguchi received his B.E,
M.E. and Ph.D. in Computer Science
from Nagoya University, Japan, in 1990,
1992, and 1995 respectively. From 1995
he was an associate professor in the
Department of Electrical and Electronic
Engineering and Information Engineer-
ing, School of Engineering, Nagoya

University. Since 2009, he has been a professor in the department
of Computational Science and Engineering, Graduate School of
Engineering, Nagoya University. His research interests are in
the areas of Human Activity Recognition, Smart Environmental
System and Ubiquitous Communication Systems.

c© 2013 Information Processing Society of Japan 144

