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Abstract—Our final goal is to realize an AR system for
indoor environments, especially for visualizing power usage of
electric appliances. We call it Power Scope. To show the desired
information over the corresponding objects, it is necessary to
identify objects. To achieve it, we use a depth image sensor
and perform two kinds of localization method, approximate
localization and accurate localization. The former is a method
to estimate where the current room is. The latter is a method to
estimate where the scope is located in the room. In this paper, we === 3
mainly introduce the former and exemplified the usefulness of Pre o
it. For approximate localization, we prepare the feature models Fig. 1. Depth Image (left) and Point Cloud (right)
of the rooms beforehand. Features are calculated based on the
planar objects in rooms. And then the system identifies the
current room by comparing the current state with them.

Index Terms—Point Cloud, Planar Objects, Markerless AR.

located in the room. We call this stegrcurate localization
in this paper. There are some rooms in a house, and there
are a lot of objects in a room. Some kinds of objects may

) ) be not only in one room but also in the other rooms such as
Environmental problems are regarded as important theg€sks or TVs. To identify such same objects, it is required

days. One of them is the electrical energy. It is important {§ perform approximate localization. We prepare the feature
save electricity at home. Smart house which generates, stofgsyels of some specific environments, namely targets of AR,
and controls energy has come into the world limelight. Ong the rooms beforehand. Assuming that the object placements
of its functions is to visualize electricity usage. It encourages 5 room are different from the other room, we identify the
users to reduce electricity consumption. They can see &rent room by comparing the current status with the models.
visualized information with smart phones, computers and $gter that, it is required to perform accurate localization in
on[1]. In the current system, visualized information mainlyrger to identify objects. We estimate a relationship between
consists of numerical values. It is hard for users to imagifge scope coordinate and the real world coordinate to find
the status of the energy. the corresponding objects. Object identification is required in
Our research aims at realizing an augmented reality (AB)der to show the information over the desired objects.

system for smart houses in order to solve such problemsyye acquire the real environment data by using a depth
AR is a technology to augment the real-world environmefage sensor. A depth image contains information relating
by computer-generated images. We are planning to visualigethe distance of the surfaces of objects from a viewpoint
power usage of electric appliances in our system. We Cgfl sensors. Figure 1 shows an example of it. The darker area
it Power ScopeUsing the scope, users check the electriCiyheans near. A depth image can be converted into a point cloud.
usage intuitively. The contents of AR are considered as fok point cloud is a set of discrete points distributed in the 3D
lows: Status of electricity consumption is displayed over ea%ace. In this research we use Mesa Imaging SwissRanger
electricity appliance, status of electricity distribution over baS§R4OOO, & detection range and Wide field of view version.
components of rooms such as walls, ceilings and floors. The, the followings, we first introduce the related works based
contents are not only statistical data but also animations ag§ sensor types, then we propose our localization method. At

whole electricity conditions of their house intuitively, whichmethod by the experiment.

makes them environmentally aware.

In order to realize such AR system, we propose two kinds Il. RELATED WORK
of localization method. One is a method to grasp where theCurrently three kinds of sensors are mainly used to estimate
current room is. We call iapproximate localizationin this the position and the direction in the real world coordinate
paper. The other is a method to grasp where the scopesystem.

I. INTRODUCTION



A. Positioning Sensor into two kinds, horizontal or vertical against the ground.

Positioning sensors such as GPS sensors, magnetoméﬁ&ondlyv they are cqtegorized into the real objects by its size,
sensors and accelerometers provide a longitude and a latit@igStence of fixed objects such as knqbs and handles, and so
a direction and a tilt of the sensor respectively. Based on the@fl- Finally, robots act on the basis of it. .
we can estimate the direction and position. Smart phones ar&0Sitioning sensors are not suited for small-scale environ-
equipped with such sensors and are well matched with tnents, §uch as rooms. It is because 'that errors become'too
kind of AR. It is generally used for large-scale environmentg?,‘rge toignore. Cgmeras are under the influence pf the ambient
for example displaying what kind of facilities locates in théght. But depth image sensors are robust against the great

direction which the user is currently looking at. changes in the ambient light, such as morning and evening.
Thus we decided to use a depth image sensor.
B. Camera In Rusu’s research, it is easy to estimate its rough position

There are two kinds of methods to realize AR with cameragnd direction since the depth image sensor is fixed on the
One is a method to use special markers, called AR markeigbot. Furthermore they assume that enough point clouds are
A position and a direction are estimated in real time bgbtained. But in our research, users move the sensor freely
recognizing transformations and patterns of markers in &nhthe 3D space. Furthermore we must interpret the current
image. Kato developed ARToolKit[2]. It utilizes black squargircumstances from one point cloud.
markers with unique pattern in it. It calculates the pose and
the position of the marker detected in an image. Then virtual
objects can be drawn in the marker coordinates. In this section, we propose a method to localize using a

There is the other approach which doesn't require suéiepth image sensor. For the multiple target AR, it is necessary
markers, calledmarkerless ARIt uses interest keypoints into make estimate of the current location where the depth image
an image instead of such markers. Klein proposed ParaMés taken. We represent an environment as a point cloud. A
Tracking and Mapping (PTAM)[3]. It is one of the majorpoint cloud can be made from a depth image.
camera tracking techniques and available in AR. It extractsThe general outline of our method is depicted in Figure 2.
a lot of keypoints from images and reliable ones, namekjrstly, we take some point clouds of specific environments,
observed ones many times, are used for estimating a positf&y scenes Then we compute features and store them into
and a direction of the camera. a database beforehand. Secondly, we roughly localize by

PTAM doesn’t have the function to show specific ARcomparing the features of the current state with the models
contents on specific targets. Castle proposed Parallel Trackigthe database. The most closest models are found and
and Multiple Mapping (PTAMM)[4] to add multiple map provide the approximate estimate about the current position
support to PTAM. PTAMM learns small spaces as differe@nd direction. Finally, an accurate relationship between the
maps and finds the most similar map to the current map $g8nsor coordinate and the real world coordinate is calculated.
real time. Thus PTAMM improves the scalability of PTAM.  Features of scenes are based on planar objects existing in

an obtained environment data. In indoor environments there
C. Depth Image Sensor are many planar objects, for example tables, floors, walls and

A depth image sensor provides the discrete 3D informati@hectricity appliances as shown in Figure 3. Generally, large
in the real world. Though there are some approaches glanes tend to stay where they are even as time goes by. There
measure the distance between the surface of objects andateethree phases for the calculation of the scene features: First
sensor, most of those are common in using infrared light. ghase is to reduce noise in an obtained point cloud. Second
depth sensor emit the infrared light to the target and calculagkase is to extract reliable planes from the point cloud. Last
the distance by some methods. phase is to compute the features from the planes.

Izadi presented KinectFusion[5] for real-time detailed 3D i
reconstructions of indoor scenes using only the depth ddta Scene Features Representation
from a RGB-D sensor, Microsoft Kinect. The depth data is 1) Noise ReductionDepth images from a sensor contain
converted from image coordinates into 3D points and normaisise. First of all we need to reduce it. For each point a k-
in the coordinate space of the sensor, and then a rigid 6D@&arest neighbor search is performed and distanceptints
transform is computed from the current oriented points amrde computed. If one of them exceeds a threskgldhe point
the previous frame on a GPU. KinectFusion also realizés added to the rejection list. After searching all points, the
geometry-aware AR and physics-based interactions by usipgints in the list are removed. Figure 4 shows the result of the
a real-time 3D model. noise reduction. Complicated shapes are lost, but it doesn't

Rusu introduced a mapping system[6] that acquires 3D ofmatter for plane extraction. In this paper, we Bet 20 from
ject models of man-made indoor environments for autonomotlie experimental knowledge.
household robots. The system classifies a variety of object®) Plane Extraction:This step is mainly based on Rusu’s
from point clouds on the basis of functional reasoning. Thereethods[6]. Firstly, surface normals are estimated. In this
are a lot of planar objects inside rooms, for example tablgsmper, 20 nearest points are selected and then a normal of
floors, doors, drawers, shelves, etc. Firstly, it segments plagaxh point is computed. And then a plane segmentation is

Ill. L OCALIZATION METHOD
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Fig. 4. Raw Point Cloud (left) and Result of Noise Reduction (right)

performed. Three points in a point cloud are randomly
selected to create an equation of a plaRein 3D space

(%9, 2):

Fig. 3. Planar Objects
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Fig. 5. Effect of Clustering: Not performed (left column) and performed
(right column), View from front (top row) and right (bottom row). The light
blue and orange planes are detected in error.

and a distance between a poinp and P can be calculated
by:

d=mnp-p+op 4)

The number of points within a threshold from the plane
is counted. By repeating this steps, the largest plane, that is,
the plane which contains the most points is extracted from the
point cloud. This floating points are projected onto the plane.

Segmented planes have outliers. To get rid of them, we
consider surface normals. Angles between the normals of the
estimated plane and of the points are calculated. Those of them
which become more than a threshdldare weeded out.

After that, the largest cluster is extracted from the plane.
For every point, a set of point neighbors in a sphere with
radiusds is searched for and grouped. Figure 5 presents the
difference whether the clustering process is performed or not.
Same colors mean same planes. If the clustering was not
performed, wrong planes may be detected as surrounded by
white frames in the left column of Figure 5.

The above-mentioned original methods by Rusu[6] use the
fixed thresholdsd;, do and ds, assuming a constant point
density throughout a point cloud. But in our research, an input
point cloud is sparse since they are created from only one
depth image. The density partially vacillates due to the depth
from the viewpoint. That is to say, the closer to the sensor,
the more dense. Therefore we dgefi = 1,2, 3) as a dynamic
number defined as follows. Two points are assigned in a same
group if their gap is smaller than:

di = 6ipz (5)

where ¢; is a parameter. We usg = 0.03m, d2 = 0.02m,
03 = 0.05m in this paper. The thresholds changes in propor-
tion to the depthp,. In the same way, it is also better féy to

where ap, Bp,vp,0p are in a Hessian normal form. To pebe set a dynamic value rather than a static one. The further the
more precise, a normal vectarp of a planeP is defined as: points are from the viewpoint, the larger measurement errors

np = (OéPvﬁPa’YP)

[npl =1

are. It results in larger errors of surface normals far from the
viewpoint. We defined), as:

0s = ov/p= (6)



. 7. Successful Result of Plane Extraction: The real environment (left)

Fig. 6. Recognition as Different Planes: The real environment (left) and Ug'ﬁg the extracted planes (right)

extracted planes (right). The light blue and yellow planes should be detecte
as the same plane.

The number of the obtained planeschanges according
to the viewpoint. Therefore it can be used to narrow the
candidates roughly.

A relationship of angles between planes doesn’t depend on
a position and a tilt of the sensor, moreover areas of planes

By repeating the above steps, planes are extracted. Thea”d time. Therefore, for all theC> combinations an angle

iteration is discontinued if the number of points in a extractetf-i between the planes; and P; (i,j = 1,2,---,n;i < j)
plane is undet. Small planes are not reliable in this method> calculated and stored as a component of an upper triangular

There are two reasons for it. One is that they tend to moJ&atrx:

where ¢ is a parameter. In this paper, we set= 10° so
that the angle threshold should b@° in the near space,m
distant from the viewpoint, and abo2@° in the far space4m
distant.

over time such as books. The other is that the segmentation 0 a2 -+ aipn

algorithm works properly for sufficient inliers. Assuming the 0 y :

sensor keeps more thamldistant from the target,= 150 is A= 1)
. . O ap_1.n

used in this paper. Therefore the areas of the detected planes 0 0 ’

are more than about00cm?.

The actual one plane may be recognized as different planedh the real world, there are a lot of parallel and perpendicular
because of the existence of some object in front of thei@nes. It is expected that the most angles are close to either
as shown in Figure 6. It is also caused by the clusterilg Or 90°. In this case, it is difficult to match the scenes
process introduced above. But if it was not done, incorregrrectly. Thus we utilize distances between parallel planes.
planes would be extracted as shown in Figure 5. To solve ti regard as parallel if an angle between two planes are under
problem, a plane integration process is required. A plEne 20° in this paper. A distance; ; between the planes; and

is combined withP, if: P; (z‘,j = 1,_2, .-+, n) is computed from the forth coefficients
dp in Equation 1:
np, - np, > cosby (") 4= |0p, —0p;| (if parallel) (12)
Deenter; * €P, < din (8) Y10 (otherwise)
Peenter, - €P; < dth ©) According to the Hessian normal formip, and dp, are

equal to the distances between the planes and the origin. If
two planes are parallel, the difference dfs nearly equal to

the distance between them. If they are not paradlg}, is set

as a constant zero. These are stored as components of an upper
triangular matrix:

wherenp, andn p, are the normals aP; and P». A threshold
i1, is set ashy, = 20° in this paper. The pointpcenter, and
Peenter, ar€ the centroids of; and P». The vectorsep, and
cp, are made from the coefficients of the equationg’pfand
P, defined as:

. 0 dip -+ din
Cp, = (aPm ﬁPN’YPdei) (Z =1, 2) (10) . .
- o D= o = (13)
whereap,, Bp,,vp;, dp, are the coefficients described in Equa- 0 du-1n
tion 1 Therefore the left sides of Inequality 8 and 9 represent 0] 0

the distances betweep.cnter, and Pz, and peenter, and P;.
In this paper, we usely, = 0.05m. After applying this
step to all the combinations of the planes, the number of
planes decreases to Figure 7 shows a good result of planeB. Scene Models Creation

These matricesA and D are utilized as lookup tables in
the following phase.

extraction. Scenes change according to pose of the sensor. Therefore
3) Features Calculation:We define the scene features agy each target environment, many scenes from different

follows: viewpoints are taken. By the methods described in Section
o The number of the planes IlI-A, n acquired scenes are processed. Generated models
« The angles between all the plands m;(i = 1,2,---,n) are stored into a databask/. The

« The distances between all the parallel plafi2s structure of a modein; is depicted in Figure 8.



TABLE I
APPROXIMATE LOCALIZATION ALGORITHM

Algorithm Approximate_Localization(M, mcurr) :

L:=10
for every modelm; € M do
r := Feature_Matching(m;, mcurr)
if r # null do
(pya,d) ==
ifa<at}]md<dth do
L:=LU {ml}
end if
end if
0: end for
1. returnL

Scene Model Point Cloud | Number of planes |

Features Angles |

Distances |

Fig. 8. Model Structure
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TABLE |
FEATURE MATCHING ALGORITHM

Algorithm Feature_Matching(m;, mcurr) :

Abest = Ath, Pbest = n_u”

if neitherm; nor mcyurr include any parallel planes do
dpest =0

else
dbc_st = dyy

end if

if m; doesn’t have the same number of plameas mcurr
return null

end if
create permutationsf (k = 1,2,-,n!)

11: fork =1ton! do

CNoOTORrONE

.
e

k
S = [sﬂ«ﬂ)] =A;— Af:)grr

12: Gmax 1= MAax < |Su,v]

k
13:  dmax := max { |ty |T = [tu,y] = D; — DE,

14: if abest >= amax N dpest >= dmax dO

15: Pbest = p!;:z

16: Qpest = Amax

17: dbest = dmax - .

18: end if Fig. 9. Experimental Environments: Deskl (left top), Desk2 (right top),
19: end if Desk3 (left bottom) and Fridge(right bottom)

20: end for

21: return (pbesh Abest dbest)

equal to mean how two whole clouds are similar. It is available
to evaluate the correspondence between not only the whole
C. Approximate Localization (Feature Matching) clouds but also between subsets in point clouds.

A current scene is processed by the methods described
above, and an input modeh.,,, is created. We compare _ o
Meure With every modeln; in the databasé/ as outlined in ~ We performed an experiment to evaluate the basic idea of

Table I. The thresholds,, andd,;, are set asi;, = 20° and ©Our method. Figure 9 depicts the experimental environment.
din = 0.3m in this paper. If neithemc,: nor m; include The desks and the refrigerator were chosen as targets. Let us

any para”e' p|anesdbest is set anbest = (0 in order to call “Deskl’,, “Desk2” and “Fridge”. Three scenes for each
disable the feature. The numbéris an index numbey of environment were taken from left, front and right viewpoints,
permutations froml to n!. The matricesA%z. and DXz, then processed and registered into the database. And then com-
described in Line 12 and 13 mean that the coefficients BRrison with four new scenes from the front was performed.
matrices are aligned respectively according to the permutatibie new scenes are taken at three registered environments and
pk. The returnedapes; and dpese can be used as matchingone non-registered environment, say “Desk3”. All objects were
scores. The lower scores, the better matching. Therefore @&sumed to be fixed this time, and a few on planes. That is to
approximately localize by the algorithm in Table II. In thissay, desks are not so cluttered.

IV. EXPERIMENT

way, the candidates are narrowed. Table 1l presents the results of the approximate localiza-
o tion. The numbers of the planes included in the models
D. Accurate Localization are depicted in round brackets. Void cells mean unmatched

In order to evaluate the correspondence between two podaimbinations since the criteria described in Line 4 in Table Il
clouds from different scans, Iterative Closest Point (ICRyas not satisfied. The marks X also mean unmatched because
algorithm[7] is available. ICP is an iterative method which triethe criteria described in Line 6 in Table 1l was not satisfied.
to find the optimal transformation by minimizing the Euclideats shown in Table Ill, Deskl and Desk2 are successfully
distances error between the nearest points or surfaces. Aftealized. Furthermore, Desk3 is successfully rejected. The
the registration, the sum of those distances is minimized. Itvssualized results are depicted in Figure 10. However, some



R; = (5.86°,0.102m) AND R = (2.88°,0.034m).

TABLE Ill
RESULT OFLOCALIZATION: THE MODEL SCENES IN THE ROWSTHE
TARGET SCENES IN THE COLUMNS R AND R2 ARE MATCHED WHERE

Desk1(5)

Desk2(6)

Desk3(5)

Fridge(3)

Deskl

Left(5)

X

X

Front(6)

X

Right(5)

R

X

Desk2

Left(7)

Froni(6)

Ro

Right(7)

Fridge

Lefi(3)

Front(4)

Right(3)

Estimate

[

Deskl |

Desk2 |

Fig. 10. Successful Results: Deskl (top row) and Desk2 (bottom row), and

The new scenes (left column) and the best matched models (right columrl%
Planes in same colors correspond to each other. The purple planes Jz
identified incorrectly in Desk1. The green and blue planes are detected upside

down in Desk2.

Fig. 11.

V. CONCLUSION

In this paper, we proposed a localization method for mark-
erless AR using a depth image sensor, and then evaluated our
approximate localization part. We confirmed that our method
could be used for a rough estimate. But there is room for
improvement in this method. The plane extraction algorithm
must works more precisely. We have to consider the usefulness
even if the models in the database increase. For example,
the current method requires an enough disk space because
each scene has a point cloud of the same target from a little
different viewpoints. To solve this problem, we would like
to integrate them into one large point cloud. In this paper, we
did not consider computing times. It is necessary to reduce the
computational complexity for AR, for example by optimizing
the code.

For accurate localization, ICP is available. We would like
to verify it, and then implement an AR system in the future.
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Failed Results: The input scene (left) and the model which should

be matched (right). The latter contains an incorrect plane colored yellow.

planes in Deskl are not correctly identified. It is because that
only two planes are parallel. Therefore they are detected upside
down.

Fridge was not localized. It is because that a wrong plane
was detected in the model as shown in Figure 11. We have to
improve the plane extraction method.



