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Abstract—Our final goal is to realize an AR system for
indoor environments, especially for visualizing power usage of
electric appliances. We call it Power Scope. To show the desired
information over the corresponding objects, it is necessary to
identify objects. To achieve it, we use a depth image sensor
and perform two kinds of localization method, approximate
localization and accurate localization. The former is a method
to estimate where the current room is. The latter is a method to
estimate where the scope is located in the room. In this paper, we
mainly introduce the former and exemplified the usefulness of
it. For approximate localization, we prepare the feature models
of the rooms beforehand. Features are calculated based on the
planar objects in rooms. And then the system identifies the
current room by comparing the current state with them.

Index Terms—Point Cloud, Planar Objects, Markerless AR.

I. I NTRODUCTION

Environmental problems are regarded as important these
days. One of them is the electrical energy. It is important to
save electricity at home. Smart house which generates, stores
and controls energy has come into the world limelight. One
of its functions is to visualize electricity usage. It encourages
users to reduce electricity consumption. They can see the
visualized information with smart phones, computers and so
on[1]. In the current system, visualized information mainly
consists of numerical values. It is hard for users to imagine
the status of the energy.

Our research aims at realizing an augmented reality (AR)
system for smart houses in order to solve such problems.
AR is a technology to augment the real-world environment
by computer-generated images. We are planning to visualize
power usage of electric appliances in our system. We call
it Power Scope. Using the scope, users check the electricity
usage intuitively. The contents of AR are considered as fol-
lows: Status of electricity consumption is displayed over each
electricity appliance, status of electricity distribution over basic
components of rooms such as walls, ceilings and floors. The
contents are not only statistical data but also animations and
personified agents. Therefore users are able to understand the
whole electricity conditions of their house intuitively, which
makes them environmentally aware.

In order to realize such AR system, we propose two kinds
of localization method. One is a method to grasp where the
current room is. We call itapproximate localizationin this
paper. The other is a method to grasp where the scope is

Fig. 1. Depth Image (left) and Point Cloud (right)

located in the room. We call this stepaccurate localization
in this paper. There are some rooms in a house, and there
are a lot of objects in a room. Some kinds of objects may
be not only in one room but also in the other rooms such as
desks or TVs. To identify such same objects, it is required
to perform approximate localization. We prepare the feature
models of some specific environments, namely targets of AR,
in the rooms beforehand. Assuming that the object placements
in a room are different from the other room, we identify the
current room by comparing the current status with the models.
After that, it is required to perform accurate localization in
order to identify objects. We estimate a relationship between
the scope coordinate and the real world coordinate to find
the corresponding objects. Object identification is required in
order to show the information over the desired objects.

We acquire the real environment data by using a depth
image sensor. A depth image contains information relating
to the distance of the surfaces of objects from a viewpoint
of sensors. Figure 1 shows an example of it. The darker area
means near. A depth image can be converted into a point cloud.
A point cloud is a set of discrete points distributed in the 3D
space. In this research we use Mesa Imaging SwissRanger
SR4000, 5m detection range and Wide field of view version.

In the followings, we first introduce the related works based
on sensor types, then we propose our localization method. At
the last, we exemplify the usefulness and weakness of our
method by the experiment.

II. RELATED WORK

Currently three kinds of sensors are mainly used to estimate
the position and the direction in the real world coordinate
system.



A. Positioning Sensor

Positioning sensors such as GPS sensors, magnetometric
sensors and accelerometers provide a longitude and a latitude,
a direction and a tilt of the sensor respectively. Based on them,
we can estimate the direction and position. Smart phones are
equipped with such sensors and are well matched with this
kind of AR. It is generally used for large-scale environments,
for example displaying what kind of facilities locates in the
direction which the user is currently looking at.

B. Camera

There are two kinds of methods to realize AR with cameras.
One is a method to use special markers, called AR markers.
A position and a direction are estimated in real time by
recognizing transformations and patterns of markers in an
image. Kato developed ARToolKit[2]. It utilizes black square
markers with unique pattern in it. It calculates the pose and
the position of the marker detected in an image. Then virtual
objects can be drawn in the marker coordinates.

There is the other approach which doesn’t require such
markers, calledmarkerless AR. It uses interest keypoints in
an image instead of such markers. Klein proposed Parallel
Tracking and Mapping (PTAM)[3]. It is one of the major
camera tracking techniques and available in AR. It extracts
a lot of keypoints from images and reliable ones, namely
observed ones many times, are used for estimating a position
and a direction of the camera.

PTAM doesn’t have the function to show specific AR
contents on specific targets. Castle proposed Parallel Tracking
and Multiple Mapping (PTAMM)[4] to add multiple map
support to PTAM. PTAMM learns small spaces as different
maps and finds the most similar map to the current map in
real time. Thus PTAMM improves the scalability of PTAM.

C. Depth Image Sensor

A depth image sensor provides the discrete 3D information
in the real world. Though there are some approaches to
measure the distance between the surface of objects and the
sensor, most of those are common in using infrared light. A
depth sensor emit the infrared light to the target and calculate
the distance by some methods.

Izadi presented KinectFusion[5] for real-time detailed 3D
reconstructions of indoor scenes using only the depth data
from a RGB-D sensor, Microsoft Kinect. The depth data is
converted from image coordinates into 3D points and normals
in the coordinate space of the sensor, and then a rigid 6DOF
transform is computed from the current oriented points and
the previous frame on a GPU. KinectFusion also realizes
geometry-aware AR and physics-based interactions by using
a real-time 3D model.

Rusu introduced a mapping system[6] that acquires 3D ob-
ject models of man-made indoor environments for autonomous
household robots. The system classifies a variety of objects
from point clouds on the basis of functional reasoning. There
are a lot of planar objects inside rooms, for example tables,
floors, doors, drawers, shelves, etc. Firstly, it segments planes

into two kinds, horizontal or vertical against the ground.
Secondly, they are categorized into the real objects by its size,
existence of fixed objects such as knobs and handles, and so
on. Finally, robots act on the basis of it.

Positioning sensors are not suited for small-scale environ-
ments, such as rooms. It is because that errors become too
large to ignore. Cameras are under the influence of the ambient
light. But depth image sensors are robust against the great
changes in the ambient light, such as morning and evening.
Thus we decided to use a depth image sensor.

In Rusu’s research, it is easy to estimate its rough position
and direction since the depth image sensor is fixed on the
robot. Furthermore they assume that enough point clouds are
obtained. But in our research, users move the sensor freely
in the 3D space. Furthermore we must interpret the current
circumstances from one point cloud.

III. L OCALIZATION METHOD

In this section, we propose a method to localize using a
depth image sensor. For the multiple target AR, it is necessary
to make estimate of the current location where the depth image
was taken. We represent an environment as a point cloud. A
point cloud can be made from a depth image.

The general outline of our method is depicted in Figure 2.
Firstly, we take some point clouds of specific environments,
say scenes. Then we compute features and store them into
a database beforehand. Secondly, we roughly localize by
comparing the features of the current state with the models
in the database. The most closest models are found and
provide the approximate estimate about the current position
and direction. Finally, an accurate relationship between the
sensor coordinate and the real world coordinate is calculated.

Features of scenes are based on planar objects existing in
an obtained environment data. In indoor environments there
are many planar objects, for example tables, floors, walls and
electricity appliances as shown in Figure 3. Generally, large
planes tend to stay where they are even as time goes by. There
are three phases for the calculation of the scene features: First
phase is to reduce noise in an obtained point cloud. Second
phase is to extract reliable planes from the point cloud. Last
phase is to compute the features from the planes.

A. Scene Features Representation

1) Noise Reduction:Depth images from a sensor contain
noise. First of all we need to reduce it. For each point a k-
nearest neighbor search is performed and distances tok points
are computed. If one of them exceeds a thresholdd1, the point
is added to the rejection list. After searching all points, the
points in the list are removed. Figure 4 shows the result of the
noise reduction. Complicated shapes are lost, but it doesn’t
matter for plane extraction. In this paper, we setk = 20 from
the experimental knowledge.

2) Plane Extraction:This step is mainly based on Rusu’s
methods[6]. Firstly, surface normals are estimated. In this
paper, 20 nearest points are selected and then a normal of
each point is computed. And then a plane segmentation is



Fig. 2. Outline of Our Method

Fig. 3. Planar Objects

Fig. 4. Raw Point Cloud (left) and Result of Noise Reduction (right)

performed. Three points in a point cloudP are randomly
selected to create an equation of a planeP in 3D space
(x, y, z):

αPx+ βP y + γP z + δP = 0 (1)

whereαP , βP , γP , δP are in a Hessian normal form. To be
more precise, a normal vectornP of a planeP is defined as:

nP = (αP , βP , γP ) (2)

∥nP ∥ = 1 (3)

Fig. 5. Effect of Clustering: Not performed (left column) and performed
(right column), View from front (top row) and right (bottom row). The light
blue and orange planes are detected in error.

and a distanced between a pointp andP can be calculated
by:

d = nP · p+ δP (4)

The number of points within a thresholdd2 from the plane
is counted. By repeating this steps, the largest plane, that is,
the plane which contains the most points is extracted from the
point cloud. This floating points are projected onto the plane.

Segmented planes have outliers. To get rid of them, we
consider surface normals. Angles between the normals of the
estimated plane and of the points are calculated. Those of them
which become more than a thresholdθs are weeded out.

After that, the largest cluster is extracted from the plane.
For every point, a set of point neighbors in a sphere with
radiusd3 is searched for and grouped. Figure 5 presents the
difference whether the clustering process is performed or not.
Same colors mean same planes. If the clustering was not
performed, wrong planes may be detected as surrounded by
white frames in the left column of Figure 5.

The above-mentioned original methods by Rusu[6] use the
fixed thresholdsd1, d2 and d3, assuming a constant point
density throughout a point cloud. But in our research, an input
point cloud is sparse since they are created from only one
depth image. The density partially vacillates due to the depth
from the viewpoint. That is to say, the closer to the sensor,
the more dense. Therefore we setdi(i = 1, 2, 3) as a dynamic
number defined as follows. Two points are assigned in a same
group if their gap is smaller than:

di = δipz (5)

whereδi is a parameter. We useδ1 = 0.03m, δ2 = 0.02m,
δ3 = 0.05m in this paper. The thresholds changes in propor-
tion to the depthpz. In the same way, it is also better forθs to
be set a dynamic value rather than a static one. The further the
points are from the viewpoint, the larger measurement errors
are. It results in larger errors of surface normals far from the
viewpoint. We definedθs as:

θs = ϕ
√
pz (6)



Fig. 6. Recognition as Different Planes: The real environment (left) and the
extracted planes (right). The light blue and yellow planes should be detected
as the same plane.

where ϕ is a parameter. In this paper, we setϕ = 10◦ so
that the angle threshold should be10◦ in the near space,1m
distant from the viewpoint, and about20◦ in the far space,4m
distant.

By repeating the above steps,m planes are extracted. The
iteration is discontinued if the number of points in a extracted
plane is undert. Small planes are not reliable in this method.
There are two reasons for it. One is that they tend to move
over time such as books. The other is that the segmentation
algorithm works properly for sufficient inliers. Assuming the
sensor keeps more than 1m distant from the target,t = 150 is
used in this paper. Therefore the areas of the detected planes
are more than about400cm2.

The actual one plane may be recognized as different planes
because of the existence of some object in front of them
as shown in Figure 6. It is also caused by the clustering
process introduced above. But if it was not done, incorrect
planes would be extracted as shown in Figure 5. To solve this
problem, a plane integration process is required. A planeP1

is combined withP2 if:

nP1 · nP2 > cos θth (7)

pcenter1 · cP2 < dth (8)

pcenter2 · cP1 < dth (9)

wherenP1 andnP2 are the normals ofP1 andP2. A threshold
θth is set asθth = 20◦ in this paper. The pointspcenter1 and
pcenter2 are the centroids ofP1 andP2. The vectorscP1 and
cP2 are made from the coefficients of the equations ofP1 and
P2 defined as:

cPi = (αPi , βPi , γPi , δPi) (i = 1, 2) (10)

whereαPi , βPi , γPi , δPi are the coefficients described in Equa-
tion 1 Therefore the left sides of Inequality 8 and 9 represent
the distances betweenpcenter1 andP2, andpcenter2 andP1.
In this paper, we usedth = 0.05m. After applying this
step to all the combinations of them planes, the number of
planes decreases ton. Figure 7 shows a good result of plane
extraction.

3) Features Calculation:We define the scene features as
follows:

• The number of the planesn
• The angles between all the planesA
• The distances between all the parallel planesD

Fig. 7. Successful Result of Plane Extraction: The real environment (left)
and the extracted planes (right)

The number of the obtained planesn changes according
to the viewpoint. Therefore it can be used to narrow the
candidates roughly.

A relationship of angles between planes doesn’t depend on
a position and a tilt of the sensor, moreover areas of planes
and time. Therefore, for all thenC2 combinations an angle
ai,j between the planesPi andPj (i, j = 1, 2, · · · , n; i < j)
is calculated and stored as a component of an upper triangular
matrix:

A =


0 a1,2 · · · a1,n

0
.. .

...
0 an−1,n

O 0

 (11)

In the real world, there are a lot of parallel and perpendicular
planes. It is expected that the most angles are close to either
0◦ or 90◦. In this case, it is difficult to match the scenes
correctly. Thus we utilize distances between parallel planes.
We regard as parallel if an angle between two planes are under
20◦ in this paper. A distancedi,j between the planesPi and
Pj (i, j = 1, 2, · · · , n) is computed from the forth coefficients
δP in Equation 1:

di,j =

{
|δPi − δPj | (if parallel)
0 (otherwise)

(12)

According to the Hessian normal form,δP1 and δP2 are
equal to the distances between the planes and the origin. If
two planes are parallel, the difference ofδ is nearly equal to
the distance between them. If they are not parallel,di,j is set
as a constant zero. These are stored as components of an upper
triangular matrix:

D =


0 d1,2 · · · d1,n

0
. ..

...
0 dn−1,n

O 0

 (13)

These matricesA and D are utilized as lookup tables in
the following phase.

B. Scene Models Creation

Scenes change according to pose of the sensor. Therefore
for each target environment, many scenes from different
viewpoints are taken. By the methods described in Section
III-A, n acquired scenes are processed. Generated models
mi(i = 1, 2, · · · , n) are stored into a databaseM . The
structure of a modelmi is depicted in Figure 8.



Fig. 8. Model Structure

TABLE I
FEATURE MATCHING ALGORITHM

Algorithm Feature Matching(mi,mcurr) :

1: abest := ath, pbest := null
2: if neithermi nor mcurr include any parallel planes do
3: dbest := 0
4: else
5: dbest := dth
6: end if
7: if mi doesn’t have the same number of planesn asmcurr

8: returnnull
9: end if
10: create permutationspkn (k = 1, 2, ·, n!)
11: for k = 1 to n! do

12: amax := max

{
|su,v |

∣∣∣S = [su,v ] = Ai −A
pkn
curr

}
13: dmax := max

{
|tu,v |

∣∣∣T = [tu,v ] = Di −D
pkn
curr

}
14: if abest >= amax ∩ dbest >= dmax do
15: pbest := pkn
16: abest := amax

17: dbest := dmax

18: end if
19: end if
20: end for
21: return(pbest, abest, dbest)

C. Approximate Localization (Feature Matching)

A current scene is processed by the methods described
above, and an input modelmcurr is created. We compare
mcurr with every modelmi in the databaseM as outlined in
Table I. The thresholdsath anddth are set asath = 20◦ and
dth = 0.3m in this paper. If neithermcurr nor mi include
any parallel planes,dbest is set asdbest = 0 in order to
disable the feature. The numberk is an index number of
permutations from1 to n!. The matricesApk

n
curr and D

pk
n

curr

described in Line 12 and 13 mean that the coefficients of
matrices are aligned respectively according to the permutation
pkn. The returnedabest and dbest can be used as matching
scores. The lower scores, the better matching. Therefore we
approximately localize by the algorithm in Table II. In this
way, the candidates are narrowed.

D. Accurate Localization

In order to evaluate the correspondence between two point
clouds from different scans, Iterative Closest Point (ICP)
algorithm[7] is available. ICP is an iterative method which tries
to find the optimal transformation by minimizing the Euclidean
distances error between the nearest points or surfaces. After
the registration, the sum of those distances is minimized. It is

TABLE II
APPROXIMATE LOCALIZATION ALGORITHM

Algorithm Approximate Localization(M,mcurr) :

1: L := ∅
2: for every modelmi ∈ M do
3: r := Feature Matching(mi,mcurr)
4: if r ̸= null do
5: (p, a, d) := r
6: if a < ath ∩ d < dth do
7: L := L ∪ {mi}
8: end if
9: end if
10: end for
11: returnL

Fig. 9. Experimental Environments: Desk1 (left top), Desk2 (right top),
Desk3 (left bottom) and Fridge(right bottom)

equal to mean how two whole clouds are similar. It is available
to evaluate the correspondence between not only the whole
clouds but also between subsets in point clouds.

IV. EXPERIMENT

We performed an experiment to evaluate the basic idea of
our method. Figure 9 depicts the experimental environment.
The desks and the refrigerator were chosen as targets. Let us
call “Desk1”, “Desk2” and “Fridge”. Three scenes for each
environment were taken from left, front and right viewpoints,
then processed and registered into the database. And then com-
parison with four new scenes from the front was performed.
The new scenes are taken at three registered environments and
one non-registered environment, say “Desk3”. All objects were
assumed to be fixed this time, and a few on planes. That is to
say, desks are not so cluttered.

Table III presents the results of the approximate localiza-
tion. The numbers of the planesn included in the models
are depicted in round brackets. Void cells mean unmatched
combinations since the criteria described in Line 4 in Table II
was not satisfied. The marks X also mean unmatched because
the criteria described in Line 6 in Table II was not satisfied.
As shown in Table III, Desk1 and Desk2 are successfully
localized. Furthermore, Desk3 is successfully rejected. The
visualized results are depicted in Figure 10. However, some



TABLE III
RESULT OFLOCALIZATION : THE MODEL SCENES IN THE ROWS. THE

TARGET SCENES IN THE COLUMNS. R1 AND R2 ARE MATCHED WHERE

R1 = (5.86◦, 0.102m) AND R2 = (2.88◦, 0.034m).

Desk1(5) Desk2(6) Desk3(5) Fridge(3)

Desk1
Left(5) X X
Front(6) X
Right(5) R1 X

Desk2
Left(7)
Front(6) R2

Right(7)

Fridge
Left(3) X
Front(4)
Right(3) X

Estimate Desk1 Desk2 None None

Fig. 10. Successful Results: Desk1 (top row) and Desk2 (bottom row), and
The new scenes (left column) and the best matched models (right column).
Planes in same colors correspond to each other. The purple planes are
identified incorrectly in Desk1. The green and blue planes are detected upside
down in Desk2.

Fig. 11. Failed Results: The input scene (left) and the model which should
be matched (right). The latter contains an incorrect plane colored yellow.

planes in Desk1 are not correctly identified. It is because that
only two planes are parallel. Therefore they are detected upside
down.

Fridge was not localized. It is because that a wrong plane
was detected in the model as shown in Figure 11. We have to
improve the plane extraction method.

V. CONCLUSION

In this paper, we proposed a localization method for mark-
erless AR using a depth image sensor, and then evaluated our
approximate localization part. We confirmed that our method
could be used for a rough estimate. But there is room for
improvement in this method. The plane extraction algorithm
must works more precisely. We have to consider the usefulness
even if the models in the database increase. For example,
the current method requires an enough disk space because
each scene has a point cloud of the same target from a little
different viewpoints. To solve this problem, we would like
to integrate them into one large point cloud. In this paper, we
did not consider computing times. It is necessary to reduce the
computational complexity for AR, for example by optimizing
the code.

For accurate localization, ICP is available. We would like
to verify it, and then implement an AR system in the future.
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