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Abstract— Up to now Scene Analysis has been based on the WiFi 

location estimation technique and it has been necessary to have a 

large scale database and a large amount of calculation. We 

propose a WiFi estimation method that uses little data or 

calculation. First of all we apply Gaussian Mixture Model to 

represent the large scale WiFi database to decrease the WiFi data 

by no less than 95%. Secondly, we apply Particle Filter to adjust 

the possible calculation quantity needed for the location 

estimation technique. As experimental result, we achieved real-

time location estimation within 6~10m. Another important issue 

for Scene Analysis technique is the high cost of operation of the 

previous WiFi observation. Accordingly crowdsourcing approach 

was used, employing as system where some users could 

contribute and other uses could share.  The ideal system is a 

composition of the Web and mobile terminal. WiFi data observed 

by mobile terminals is uploaded to a Web server where it is 

managed and integrated into GMM and large scale operations 

are carried out on data and calculations. When the lightweight 

modeled data is downloaded to the mobile-terminal, the mobile 

terminal then has the ability to carry out real-time location 

estimation independently.  

Keywords-component; WiFi Localization, Scene Analysis, 

Gaussian Mixture Model, Particle Filter, Crwodsourcing 

I. INTRODUCTION 

This research aims to estimate the indoor locations of 
mobile terminals in real-time using WiFi information. 
Additionally, the function can be applied in any building in the 
real world. Location estimation methods such as WiFi, RF tags, 
infra-red, IMES etc. are also proposed [1-10]. Among these 
methods, WiFi is said to be more advantageous in terms of 
infrastructure cost as existing WiFi access points (APs) that are 
already widely installed in homes and public facilities can be 
used. 

In this research, Scene Analysis [4,8,10] is adopted as the 
indoor location estimation method. Scene Analysis is a method 
whereby the scenes at multiple points within a region are 
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observed and then data corresponding to those scenes and the 
observation points are collated in a database. By comparing the 
current WiFi environment with the database, the point that is 
considered the most similar is then taken as the current location. 
As this method takes into account the effect of reflected and 
dispersed waves, coupled with the possibility of a higher 
accuracy compared to other methods by narrowing the 
distances between the observation points, it is therefore 
considered to be the most suitable indoor method where there 
are many obstacles. 

In order to estimate the location accurately in real-time 
using a single mobile terminal, it is necessary to limit the 
computational complexity to a level that is possible for real-
time processing by using a light-weight database. However, 
conventional methods of location estimation using Scene 
Analysis require large amounts of data and computational 
complexity. As indoor WiFi radio waves are not attenuated by 
the same amount due to the presence of walls and obstacles, it 
is preferable that the WiFi environment be measured in 
advance with as narrow an interval as possible so as to improve 
the accuracy of the estimated location. Now, the amount of 
data collected increases proportionately with the number of 
observation points.  For conventional methods, the larger the 
number of WiFi APs in use and the wider the estimation range, 
the larger is the amount of computational complexity required 
and therefore the load imposed on the mobile terminal also 
becomes proportionately larger. 

Another problem with Scene Analysis is the high labor cost 
involved in collecting fingerprints. The system needs to be 
notified of the location of each observation point and these 
needs to be recorded repeatedly at narrow intervals together 
with the radio observation information at that time. 

In order to resolve these problems, we propose a WiFi 
location estimation method that allows the computational 
complexity to be adjusted accordingly using a light-weight 
database. Under the proposed method, we approximated the 
radio wave distribution observed beforehand for each AP into 
one Gaussian Mixture Model (GMM) to achieve large data 
compression. We also used a Particle Filter (PF) to estimate the 
indoor location from the GMM groups obtained. As the 
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computational complexity depends on the number of particles, 
real-time location estimation becomes possible for even mobile 
terminals if the number of particles is adjusted. 

Furthermore, in order to resolve the problem of high labor 
cost in collecting fingerprints, we introduced the 
crowdsourcing method [11] and built a system named 
indoor.Locky whereby the work can be distributed among 
multiple users. This system is equipped with a floor map 
posting function so that it can be used in any arbitrary system. 
Due to the seamless connection with outdoor location services, 
it is also equipped with floor maps and latitude / longitude 
functions. 

The composition of this paper is as follows. First of all, 
Chapter 2 provides an overview of the problems faced by 
current research up till now. Next, in Chapter 3, we propose the 
location estimation method using GMM and PF, then perform 
several experiments on the accuracy of the estimated location 
and data compression ratio in Chapter 4. Chapter 5 describes 
indoor.Locky which provides the foundation for the WiFi 
indoor location system based on crowdsourcing while Chapter 
6 provides a summary and some future issues. 

II. RELATED WORK  

Most of the existing location estimation methods using 
WiFi are classed as Triangulation [1,9], Proximity [3,5] and 
Scene Analysis [4,8,10] methods. Among these, Scene 
Analysis is considered effective in estimating the indoor 
location accurately. Triangulation is a location estimation 
method that uses the radio propagation characteristics and 
relative locations from known standard locations. Because of 
the many walls and obstacles indoors, this method is said to be 
difficult to use as the radio waves are not attenuated according 
to the distance characteristics due to the influence of reflected 
and dispersed waves. The Proximity method is used to 
determine roughly which standard point is in the vicinity of the 
location estimation target. This method is deemed insufficient 
as indoor location estimation generally requires a high degree 
of accuracy. Scene Analysis estimates the location by 
performing scene observation at multiple points within the 
estimation zone and collects data corresponding to each scene 
and observation point (fingerprint). This method creates a 
database that takes into account the influence of reflected and 
dispersed waves. By narrowing the distance between 
observation points, it is capable of making more accurate 
estimations than other methods and is thus more suitable for 
estimating location indoors. In this research, location 
estimation is performed based on the RSSI-based Scene 
Analysis. 

In order to estimate the real-time location accurately in an 
indoor WiFi environment, we have to resolve the following 
two points. The first one concerns the problem of the data 
volume. Many observation locations are required for accurate 
location estimation and the data volume increases in proportion 
to the number of observation points. The second problem is the 
issue with the computational complexity. Although Bayesian 
estimation method is proposed as a location estimation method 

using Scene Analysis [2], computational complexity becomes 
very large when estimating the location in a large floor as it 
calculates the most likely location among all the candidate 
points. 

In recent years, the crowdsourcing approach has been 
attracting much attention. This is a method whereby the 
workload that cannot be processed automatically using 
computer due to high labor cost is shared among many users. 
The world maps in OpenStreetMap are also built by users 
based on this approach [12]. Through the participation of many 
users in information collection and content creation, the labor 
cost for each person can be lowered and large-scale media 
creation is made possible. The effectiveness of WiFi 
observations made in advance based on crowdsourcing has 
already been demonstrated in several research studies [13-16]. 
One major issue with Scene Analysis is the high labor cost 
required to make observations of WiFi information in advance. 
If it is outdoors, the observation terminal can simply be located 
on a running car or bicycle since the radio observation 
information can be linked with the absolute coordinates 
obtained by GPS. However, GPS cannot be used indoors. 
Therefore, the system needs to be notified of the location of 
each observation point and these needs to be recorded 
repeatedly at narrow intervals together with the radio 
observation information at that time. By sharing this workload 
among multiple users, the labor cost for each person can be 
lowered 

Conventional crowdsourcing systems [13-16] are not 
suitable for use in an actual environment for the following two 
reasons. The first one is that it cannot be used for any arbitrary 
building as it cannot register the building information and floor 
map. The second reason is that a seamless connection between 
indoors and outdoors is not possible. While most location 
services commonly in-use today are based on geographical 
coordinates (latitude, longitude), conventional crowdsourcing 
systems return the location in terms of floor map coordinates. 

Figure 1.  Difference of the shape between WIFI path loss model and 

Gaussian distribution 

III. WIFI INDOOR LOCALIZATION  

To enable real-time location estimation using limited 
resources and mobile terminals, low data volume and low 
computational complexity need to be achieved. The location 
estimation method proposed in this paper using a Particle Filter 
(PF) and model created based on Gaussian Mixture Model 
(GMM) is able to satisfy both these conditions at the same time. 
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 Figure 2. Procedure of modeling. (Left) RSSI, (Center) Convergence of points, (Right) GMM (8 mixture) 

A. Data Compression using Gaussian Mixture Model 

The volume of data obtained using advance observations in 
a WiFi environment depends mainly on the number of 
observation points and number of observations at each point. 
The information observed at a certain point in the target floor is 
a list of the BSSID and RSSI. BSSID is the AP’s unique ID. 
RSSI is receives signal strength indication, and the unit is dBm. 
When the floor under observation is large, the data volume 
increases if observations are made at narrow intervals for 
accurate location estimation. 

In this research, a model of the radio wave distribution for 
each AP is approximated into 2-dimensional GMM. As shown 
in the schematic diagram on the left of Fig. 1, it is known that 
the intensity varies by a large amount around the AP [9]. On 
the other hand, Gaussian distribution as shown on the right of 
Fig. 1 shows that there are no large changes in density near the 
average value. However, the position that Gaussian distribution 
cannot approximate the figure is limited to quite near position 
to the AP, so that the effect seems to be low. Therefore, 
although the radio wave transmission characteristics of the 
WiFi cannot be completely represented using GMM, there is 
no problem in using GMM proximity since only the area 
extremely close to the AP will show a large proximity 
influence. 

The definition of GMM is shown below. Equation (1) 
expresses a 2-dimensional Gaussian distribution and contains 
the average μ and scattered co-variance matrix Σ. A GMM 
with a K number of overlapping Gaussian distributions is 
expressed by (2) and (3). πk is known as a mixing coefficient 
and expresses the weight of each mixing element (Gaussian 
distribution). Like (3), the total of all the mixing coefficients is 
equal to one. The shape of the 2-dimensional GMM is 
determined by the individual Gaussian distribution average, 
scattered co-variance matrix and mixing matrix. If the linearly-
mixed weighted coefficients of each Gaussian distribution 
average and scattered co-variance are adjusted using a 
sufficient number of Gaussian distributions, any arbitrary and 
continuous density function can be approximated. 

)}()(
2

1
exp{

2

1
),|( 1 


  

xΣx
Σ

Σx
TN  

(1) 

),|()(
1

kk

K

k

k Nxp Σx 


  (2) 

1
1




K

k

k
 (3) 

The radio wave distribution of each of the K number of AP 
observed on the target floor is approximated using GMM. 
GMM is expressed as a list of the following information: 
mixed number of Gaussian distributions; and average, scattered 
co-variance matrix, mixing coefficient of each Gaussian 
distribution. Based on this, the data volume after transforming 
to GMM depends mainly on the number of APs within the 
target floor and not on the number of observation points. 

The process for creating the model is as follows. First of all, 
transform the WiFi RSSI data (left side of Fig. 2) for a certain 
AP into a point distribution on a 2-dimensional planar surface 
(center of Fig.2). Next, using an EM algorithm, estimate the 
GMM (right side of Fig. 2) from the 2-dimesional distribution. 
The model is created by following this process for all floors 
and all APs. 

First of all, transform the point distribution on the 2-
dimensional diagram (the higher RSSI, the higher is the point 
density) as shown in the center of Fig. 2 into an intermediate 
format for creating a model of the collected WiFi information. 
Here, divide the control regions according to the observation 
points, and then transform it into a point distribution by 
scattering the number of points corresponding to the value of 
the radio wave intensity at each control region. The control 
region for each observation point is divided up using Voronoi 
diagram [18] such that the respective control regions do not 
overlap and there is no blank space between the regions. 

The number of points Sn located in each Voronoi region Vn 
is determined using (4) based on the surface area Mn of the 
region and the radio wave intensity αn on the observation points 
controlling that Voronoi region. 
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This thesis assumes that the minimum radio wave intensity 
considered is -90dBm and that the points are distributed only 
when αn is larger than -90dBm. Parameter R is a constant value 
for converting the RSSI into a positive number. Argmin is a 
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function to return the surface area of the smallest Voronoi 
regions among the observation points. Finally, by randomly 
selecting vm number of coordinates in the region Vn and 
locating the points at those coordinates, this is transformed into 
the point distribution as shown in the center of Fig. 2. 

From the point distribution, an EM algorithm is used as a 
method to estimate the GMM. EM algorithm is one of iterative 
methods and known as powerful method to estimate stochastic 
model parameters using maximum likelihood estimation. EM 
algorithm is also known as the estimation method of GMM 
parameters [17]. There are two step called step E (expectation) 
and step M (maximization). Assuming the 2-dimensional point 
distribution as {x1, …, xN}, the matrix becomes N-2 matrix X 
with the n-th row as xn

T
 and the log likelihood function is 

expressed as follows using (2). 
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Here, the GMM parameters of each Gaussian distribution 
(average μk, scattered co-variance matrix Σk, mixing coefficient 
πk) are estimated by maximizing (5). The GMM mixing 
coefficient is assumed to be set manually. The EM algorithm 
consists of two updating steps known as Step E and Step M and 
calculates the log likelihood function in (5) and repeats Step E 
and Step M until it satisfies the convergence standard. 

First of all, initialize the average, scattered co-variance 
matrix and mixing coefficient of each Gaussian distribution. In 
order to reduce the number of iterations until it satisfies the 
convergence standard, do not set the initial values randomly 
but use a K-means algorithm to set them. Create a cluster of the 
2-dimensional point distributions using K-means (cluster 
number: K) and use the sample average and sample co-variance 
of each cluster as the initial values of the average and scattered 
co-variance matrix of each Gaussian distribution. Use the ratio 
of the number of points belonging to each cluster as the mixing 
coefficient. 

Next, using the average, scattered co-variance matrix and 
mixing coefficient for each of the mixing element at that point, 
calculate the load factor in Step E. The load factor expresses 
the extent of the collection data that the mixing element k bears 
and is expressed using (6). 
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In Step M, the average, scattered co-variance matrix and 
mixing coefficient of each Gaussian distribution are updated 
using the load factor calculated in (6). The updating formula is 
as shown below. 
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The parameter updating procedures Step E and Step M will 
always increase the log likelihood function in (5). When the 
log likelihood function or the variations in each parameter 
become smaller than the threshold, the EM algorithm is 
deemed to have converged. Repeat Step E and Step M as long 
this convergence condition is not satisfied. In this research, a 
variance of less than 10% in the log likelihood function is 
assumed as the convergence condition. The right side of Fig. 2 
shows the transformed GMM using the actual 2-dimensional 
point distribution shown in the center of Fig. 2. 

B.  Real-time Localization using PF 

We will describe how location estimation is performed 
using the GMM. We adopt PF as a technique to estimate the 
optimal solution for the current location based on the GMM 
and WiFi information observed at a particular point. PF is a 
type of chronological order filtering method that can handle 
any arbitrary probability density function. PF is also adopted 
by several researches for GMM-based object tracking [19,20].  
Selecting multiple sequential states in several hundred to 
several thousand particles, the weighted average was estimated 
as sequential states and then tracked based on the likelihood of 
all the particles. 

In order to realize location estimation in real-time using a 
mobile terminal, the computational complexity needs to be 
restrained and PF is able to satisfy this constraint. The 
computational complexity of PF depends on the number of 
particles N and since it is expressed by O(N), the computational 
complexity can be adjusted using N. However, if the number of 
particles is too few, sufficient estimation accuracy cannot be 
obtained and when there are too many, the computational 
complexity becomes too large. As a result, the computational 
complexity needs to be reduced as much as possible while still 
maintaining the estimation accuracy. Preliminary experimental 
results indicate that a particle number of between 200 and 300 
is the most optimal in indoor location estimation. 

The WiFi observation data O
t
 at time t is expressed by a 

combination of the BSSID β
t
 and RSSI α

t
. The aggregate of the 

N number of particles A
t
 at time t is expressed using particle a

t
n, 

floor ID Floor
t
n, coordinate p

t
n and weight

t
n. 
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Location estimation algorithm using PF is performed 
according to the following 5 steps. 

1) Particle Initialization  
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Here, it is assumed that the floor ID and coordinates of each 
particle are randomly determined and that the user holding the 
mobile terminal does not to maintain its initial location. In 
order to equalize the existence probability of each particle, the 
weight at time 0 Weight

0
n is set as given in the formula. 

2) Particle movement  
Next, the coordinate p

t
n is updated as each particle is moved 

in a random direction by a random distance d between 0 and D. 
D needs to be set at an appropriate distance depending on the 
interval between the estimation steps and movement speed of 
the user. For example, assuming a person is walking at a brisk 
pace, and the location is estimated at 1 second interval, setting 
D as 5 - 6 m in 1 second can cover the rest state to the brisk 
walking state. For particle a

t
n where the weight weight

t
n at time 

t is below the sub-threshold value, that particle is moved from 
the floor Floor

t
n to which it belongs to a random coordinate of 

a potential transition floor. When there are multiple potential 
transition floors, this is randomly determined. The potential 
transition floors include the current floor as well. Based on this, 
it is possible to prevent a situation where the location 
estimation straddles multiple floors and the particle is caught in 
the furthest areas and cannot be moved to an accurate location. 
In this thesis, the sub-threshold value of the movement weight 
between floors is assumed to be 10% 

3) Weight updating (WiFi Observation) 
The weight weight

t
n of each particle a

t
n after movement is 

updated using the likelihood function e
t
n. From Fig. 1, since the 

variation in RSSI versus distance becomes larger in areas 
where the RSSI is large (distance from AP is short), the 
estimation accuracy can be improved by using only APs with 
large RSSI. Sometimes interference may occur in the WiFi 
radio waves due to the influence of the mobile terminal and 
other APs and therefore the reception of WiFi radio waves may 
not be always stable. As a result, sometimes there may be no 
reception from APs that should have been observable in the 
first place and sometimes only extremely weak signals can be 
received. The influence from wave interference can be reduced 
by estimating the location using the RSSI and model of only 
those APs where reception is stable and the intensity is above 
the sub-threshold value. First, extract from the observation data 
O

t
 (o

t
0,..., o

t
i) those BSSIDs (β

t
0, ..., β

t
j ) whose wave intensities 

are above the sub-threshold value R. If there are none, select 
the BSSID whose reception intensity is the strongest. The 
preliminary experimental results indicate that the location 
estimation accuracy improved the most when the sub-threshold 
value R is set in the region of -70dBm. 

Next, determine the estimated RSSI γ
t
ni on each GMM for 

every extracted BSSID β
t
i for each particle a

t
n. 
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Based on this, the BSSID β
t
i related existence probability 

for the particle a
t
n can be determined in the GMM. A 1-

dimensional Gaussian distribution is used for the likelihood 
function e

t
n. When the standard deviation of this Gaussian 

distribution is too small, the e
t
n peak is too sharp, and 

consequently the particle is stuck in a far area and cannot be 
moved to its correct location. However, as seen in the 

preliminary experimental results, this phenomenon could be 
avoided by setting the standard deviation in the region of 5. 

Since the extracted BSSID number is j, the likelihood 
function e

t
n is determined as follows. 
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Lastly, normalize the particle weight such that the sum of 
all the particle weights equals 1. The weight is updated using 
the constant C as follows. 
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The constant C refers to the extent the weight in the 
previous step is inherited. In this thesis, in order for a particle 
to easily break out of a point in a far area where it has 
converged to, C is set at a small value of 1.0*10

-15
. 

4) Resampling:  
In particle resampling, all particles are moved to the 

coordinates of other particles. In order to determine the particle 
at the destination point, the weight of each particle is treated as 
a probability where that particle has been chosen to be the 
destination point. In order to avoid too many particles existing 
at the same coordinates, random walks at small distances are 
added. Based on the above, many particles end up being 
relocated around particles with large weights.  

5) Presentation of the estimated Location  

The coordinates of each particle are presented to the user 
together with the floor map (Fig. 3). Large blue points are 
locations where the terminal actually exists and the multiple 
small points are the particles. From Fig. 3, it can be seen that 
most of the particles exist in the vicinity of the actual terminal 
location indicating that the location estimation has been 
performed normally. After presenting the location, return to 
Step 2 and estimate the location at time t+1. 

IV. EVALUATION 

A. Evaluation of Data Compression 

In this section, the extent of the data compression after 
transforming to GMM is evaluated. 

The actual WiFi observation information on the first and 
second floors of the electronic data center in Nagoya 
University was observed. The area of each floor was about 
5000m

2
. The observation points were set at 1m intervals with 

 
 

 

 

 

Figure 3. Visualization of the location estimation.  
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187 points on the first floor and 139 points in the second floor. 
30 observations at 1 second interval were carried out at each 
point. The amount of time taken for the WiFi observation was 
about one and a half hours for each floor. Before creating the 
model, APs where RSSI above the sub-threshold value was not 
observed at any point were excluded. This thesis set the sub-
threshold value of the RSSI of the APs that were to be 
excluded from the model creation experientially at -70dBm. 
When creating the model, the mixed coefficient of the GMM 
was manually determined. 

Table 1 shows a comparison of the AP number and text 
data volume before and after the model creation. The data 
volume compression ratio refers to the ratio of the data volume 
after removing APs with low RSSI to the data volume after 
creating the model. Based on this, the data volume can be said 
to have been reduced to 99.81% after the model was created. 
Nonetheless, the model created in this thesis uses the average 
of 30 WiFi measurements at one observation point. If one 
observation at one point is used, the data volume before the 
model creation is reduced to 1/30 of the average. In this case, 
the data volume compression ratio as a result of creating the 
model is about 95%. 

TABLE I.  COMPARING OF THE AMOUNT OF DATA 

 # AP 

# AP 

(except 

for low 

RSSI) 

Data 

amount 

before 

modeling 

Data amount 

before modeling 

(except for low 

RSSI) 

Data 

amount 

after 

modeling 

Compr

essibili

ty ratio 

1F 207 22 45288KB 12169KB 22KB 
99.82

% 

2F 241 12 50663KB 5643KB 13KB 
99.77

% 

Total 448 34 95951KB 17812KB 35KB 
99.81

% 

 

TABLE II.  PARAMETERS OF EXPERIMENTS 

Particle Number 300 

Max moving distance of a particle 6m 

Standard deviation of likelihood 

function 
5 

RSSI Threshold -70dBm 

B. Evaluation of Localization 

 The accuracy and real-time nature of the estimated location 
was evaluated using the collected data in this section. 

First, we will provide a comparison of the estimated 
accuracy using the proposed method and other conventional 
methods. 2 conventional methods were selected. One of the 
two methods uses the Bayesian estimation method [2]. The 
other estimates the location from the virtual location 
distribution of the WiFi APs and uses the radio transmission 
characteristics to determine the location of the terminal. Based 
on the preliminary experimental results, the parameters used in 
the proposed method are set as shown in Table 2.  

Figure 4 shows a graph comparing the estimation accuracy 
of the various methods. The horizontal axis shows the error 
between the estimated result and the actual location while the 

vertical axis shows the proportion of correct estimations 
against the overall number performed. Comparing the 
proportion where the estimated error is less than 10m among 
the various methods, the base estimation method was the 
lowest at about 15%, the virtual AP method about 50% while 
that for the proposed method was the highest at 88%. Based on 
this, it has been shown that the proposed method is more 
accurate in estimating the location indoors compared to other 
methods. 

The accuracy of the estimated location using the various 

methods as obtained from the experimental results was studied. 
As a preliminary step using Bayesian Estimation, the RSSI at 
points that were not observed was supplemented using the 
observed RSSI. However, it was not possible to overcome the 
constraints posed by the building walls and thus scenes were 
supplemented using only the distance characteristics. Moreover, 
as it was not possible to express the continuity according to the 
estimation steps using base estimation, this resulted in the low 
accuracy. On the other hand, as the proposed method uses a PF 
that is a chronological order filtering technique, it can express 
the continuity of the estimation steps thereby resulting in the 
higher accuracy.  The median of the error is about 6m¸ and the 
probability that the estimation error is less than 10m is about 
90%. The reason for the low accuracy using the virtual WiFi 
APs is believed to be because the influence of reflected waves 
due to the walls and obstacles has not been factored in. On the 
other hand, as the proposed method takes into account the 
influence of walls and obstacles by adopting the Scene 
Analysis methods, highly accurate estimation is thus possible. 

Next, the real-time nature of the method is evaluated. 
Equipping the actual device with the location estimation 
function using GMM and PF, it has been verified that location 
estimation in real-time is possible. An iPad (processor: A4, 
memory: 256MB) was used. Using this, estimation at 1 second 
intervals for up to about 2000 particles was possible. As the 
optimal number of particles is about 200 to 300, it can be said 
that processing in real-time is therefore sufficiently possible. 

 
 

 Figure 4. Comparing graph of the accuracy of each location estimation 

method  



2012 International Conference on Indoor Positioning and Indoor Navigation, 13-15
th

 November 2012 

 

 

V. INDOOR.LOCKY 

In this chapter, we will describe the system named 
indoor.Locky as the foundation for an indoor location 
estimation system that can be used in the real world. In order to 
use the location information in any building, crowdsourcing 
approach based on the cooperation of general users is adopted 
so that the workload for the indoor WiFi observations can be 
shared among multiple users. Furthermore, this system can be 
used for location estimation in any building and by connecting 
it to an outdoor GIS. 

indoor.Locky consists of the following three elements. 1: A 
web service for the integration and management of WiFi 
information and building information that has been posted by 
the user. 2: Client software operating on the mobile terminal. 3: 
API for the use of the location information by any application. 
The client software is suitable for use in PC and iPhone / iPad. 
The web service uses the Google App Engine. 

A summary of this system is shown in Fig. 5. Each user 
uses a terminal that has been installed with the indoor.Locky 
client software. Based on the following process, the location 
information in any building can be used. 

A) Users enter the building and floor information 
(building information) 

B) Users perform the WiFi observation on each floor and 
uploads the information 

C) The web service integrates the uploaded observation 
data and transforms it into a GMM on the spot (WiFi 
model) 

D) Users download the WiFi model and building 
information into the terminal and use the real-time 
location estimation function. 

A. Registration of Building Information 

First, enter the building information used for the location 
estimation from the Web browser. Figure 6 is the building 
registration screen. Enter the building name and number of 
floors above and below the basement into the form and using 
Google Maps, register the coordinates of a representative point 
of the building. Next, register the floor map of each floor of the 

building. As most buildings generally do not make public their 
detailed floor map data such as CAD data, a picture of the floor 
map displayed in the building can be taken using a camera and 
then the image is uploaded. 

The management of floor images posted by the user is 
presented here. First of all, the display of floor maps is 
generally not standardized. It is not necessary to have one 
image for each floor and the same floor image can be used for 
multiple floors. For example, in Fig. 7 the second storey and 
mezannine converge to a single floor image. Sometimes 
multiple floors may also collapse into one. In reality, a point in 
the middle second storey is a location that is surrounded by a 
dotted line. Also, instead of being depicted in a planar surface, 
sometimes it can also be represented 3-dimensionally as shown 
in Fig. 8. 

The floor images are managed as shown below according to 
units known as floor regions. Each floor region is created by 
designating 3 or more points in the floor image. On the right 
side of Fig. 9, a section of the second floor in the train station is 
taken as a single floor region (a pin is shown at the peak with 
the region bordered by the lines between the peaks). When 
multiple floors exist for a single floor image, create multiple 
floor regions. This way, we can resolve the issue of multiple 
floors existing in a single floor image and create 3-dimensional 
floor maps that are trapezoidal and diamond-shaped and also 
polygonal floor regions. Next, select the floors corresponding 
to each respective floor region. In addition, use the mouse 
cursor to enter into the Google Maps the geographical 
coordinates corresponding to the peaks of the polygonal floor 
region so as to map them to a geographical coordinate system 
(right side of Fig. 9). By performing an affine transformation of 
the floor region, an inter-conversion between the coordinates in 
the floor image and geographical coordinates can be achieved. 
Even if multiple floors collapse into a single floor image as 
shown in Fig. 7 so as to match the latitude and longitude 
according to each region, we can still map the coordinates of 
each floor region correctly to the geographical coordinates. The 
mapping of the peaks of the floor region with the geographical 
coordinate system is not a requirement and is only carried to 

 
 

 

 

Figure 5. Abstract of indoor.Locky platform 

 
 

 
Figure 6. Building Information Registration 
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determine the mapping function correctly. Display of location 
information using geographical coordinates is limited to floor 
regions that have already been mapped with the geographical 
coordinate system. 

B. WiFi Observation 

The indoor WiFi observation is performed by the user using 
the client software installed in the terminal. At each 
observation point where the WiFi observation is performed, the 
user taps or clicks the floor image to inform the system of his 
location and record the corresponding WiFi observation 
information at the position (Fig. 10). A pin is displayed for 
points that have already been observed by the user or other 
users and the user repeats the movement and observation for 
only points where there are no pins shown.  

C. Modeling WiFi observation data toGMMs  

When the user transmits the observation data to the Web 
service, the Wed Service immediately transforms the data into 
the WiFi model according to the base station on each floor by 
making use of the data uploaded by multiple users.  When 
multiple users post observation data from the same floor, the 
system integrates these multiple observation data and 
transforms them into the WiFi model. Even when the model 
transformation is already completed, when new WiFi 
observation data is posted, the transformation is performed 
again to update the WiFi model. 

Using the technique described in Sec. 3, the GMM mixing 
coefficient had to be determined manually. However, this 
function has been automated in the system by allowing more 
mixing coefficients to be set when there are more observation 
points for each base station. When there are too few mixing 
coefficients, complex radio distribution shapes cannot be 
approximated. Conversely, few failures occur as a result of too 
many mixing coefficients when approximating simple radio 
wave distribution shapes. The specific correlation between the 
number of observations points and mixing coefficients has 
been determined experientially here. 

D. Utilizing the result of location estimation 

When a user accesses the Web service and downloads the 
WiFi model, the system is ready to perform real-time location 
estimation on that floor. When the current location display 
function in the client is used, the results of the location 
estimation can be viewed in real-time as a particle distribution 
(Fig. 10). Any browser and application can access the client 
through the API to make use of the estimated location (particle 
center of gravity). The current configuration only allows the 

 
 

 
Figure 7. An example of floor map. Physical relationships of these floors 

are not consistent 

 

Figure 8. An example of floor map. The floors are as three-dimensionally 

Figure 9. Mapping between a floor area and geographical coordinates. 
 

 

 

 
 

 

 

Figure 10. Indoor WiFi observation client (iPad) 



2012 International Conference on Indoor Positioning and Indoor Navigation, 13-15
th

 November 2012 

 

 

use of the estimated location information by browsers and 
applications which are installed on the same terminal as the 
client. 

As mentioned previously, when the peaks of the floor 
regions have been mapped with the latitude/longitude 
coordinates, the estimated location can be obtained not only as 
coordinates within the floor image but also as geographical 
coordinates. Coordinates within the floor image are useful for 
services where the relative positions indoors are important (e.g. 
indoor navigation, store guide etc). On the other hand, 
geographical coordinates are useful for many existing outdoor 
location services that rely on geographical coordinates. 
Therefore this system is useful for location services that require 
a seamless connection between the indoors and outdoors. 

VI. CONCLUSION 

This paper proposes the adoption of a location estimation 
method in creating a system with the aim of using a mobile 
terminal and WiFi technology to determine the indoor location 
in any building. Under this method, the WiFi data volume 
using GMM and PF has been reduced by more than 95% with 
an accuracy of about 6 to 10 m in real-time location estimation. 
Next, a system based on the proposed method was built in an 
actual operating environment. This system named 
indoor.Locky adopts crowdsourcing approach to reduce the 
labor costs in performing advance observations by sharing the 
workload among multiple users. By equipping the system with 
functions to upload floor maps taken by users and map the 
floor maps to geographical coordinates, the system can be used 
in any building and also connects seamlessly with outdoors 
GIS. 

Going forward, we are aiming for a public launch with 
more functions incorporated into the indoor location service. 
We are also studying how to semi-automatically organize the 
floor map images posted by users. 
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Figure 11. A scene of real-time indoor location estimation (iPad) 


