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ABSTRACT 
Explicit multiunicast (XCAST) is a form of small group multicast 
in which the sender embeds IP addresses of all receiving nodes in 
a special header and sends it with all data packets. On sending, 
each XCAST-aware router in the path examines the packet and 
partitions the destinations into various sets based on their next 
hops. For each set, the router uses a bitmap in the packet header to 
ensure that each copy of the packet is delivered only to 
destinations whose corresponding bits in the bitmap are set to 1. 
Sometimes real world implementation of XCAST6 can take a 
long time to deploy and resource constraints can limit the scale of 
testing that can be done. We have therefore integrated XCAST6 
into the IPv6 stack of INET Framework for OMNeT++ to allow 
for large-scale, exhaustive and realistic investigation of XCAST6 
characteristics and to complement our current research into real 
world deployment of XCAST6. The contribution of this paper is 
two fold. First, it describes our implementation of XCAST6 in 
OMNeT++'s INET framework. Secondly, it experimentally shows 
the effectiveness of XCAST6 with regards to various multicast 
performance metrics such as stress, end-to-end delay, efficiency 
and packet processing overhead rate.  

Categories and Subject Descriptors 
C.2.2 [Computer-Communication Networks]: Network 
Protocols. 

C.4 [Performance of Systems]: Performance attributes. 

General Terms 
Performance, Quantitative. 

Keywords 
XCAST6, Simulation, INET framework, OMNeT++. 

1. INTRODUCTION 
Numerous multicast technologies have been proposed to 
ensure efficient utilization of Internet bandwidth for group 
communication. Even though IP Multicast is conceptually 
able to provide efficient group communication and utilize 

the available bandwidth efficiently[6], its global 
deployment has not been effectively realized. This has 
majorly been due to security issues, efficient congestion 
control scheme and need for special support in the network 
devices[11]. However, there exist local networks that are 
multicast capable[16] and are used to deliver TV and 
Telephony services. Multicast was originally targeted at 
very large groups but there also exist group communication 
applications such as video conferencing, IP telephony and 
online multiplayer games which only require a large 
number of distinct, small groups and cannot be served well 
with the traditional IP multicast. Small group, multi-
destination multicast variants have therefore been proposed 
specifically to serve this class of applications. 

Explicit multiunicast (XCAST)[4] is a form of small group 
multicast in which the sender embeds IP addresses of all 
receiving nodes in a special header which it then sends 
with every data packet. During transmission, each XCAST-
aware router in the path examines the packet, looks up the 
next hop routers for each of the embedded destination 
addresses and partitions the destinations into various sets 
based on their next hops. For each set, the router uses a 
bitmap in the packet header to ensure that each copy of the 
packet is delivered only to destinations whose 
corresponding bits in the bitmap are set to 1.  

Deployment of XCAST in the real world has been a subject 
of research[12,3]. In [2,3] we have proposed a simple 
routing engine for realizing this but we are also cognizant 
of the fact that sometimes real world implementations can 
take a very long time to realize and resource constraints can 
limit the scale of testing that can be done. A simulation 
environment for XCAST6 is therefore necessary. However 
most of the existing simulators do not have multicast 
routing models required by small group multicast protocols 
such as XCAST.  

Kolberg and Burford[14], in their project of extending 
OMNeT++ for Scalable Adaptive Multicast simulations, 
have come up with XCAST and AMT implementations for 
the Oversim simulator[1]. Their work however currently 
supports only simulation of XCAST on the IPv4 stack. On 
the other hand, our current research on XCAST6 
deployment in the real world is based on XCAST6 version 
2.0[13] hence we found it necessary to extend the IPv6 
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stack of the INET Framework[17] in OMNeT++[18,19] to 
allow for simulation of our current research. 

In the next section we briefly describe XCAST6, 
OMNeT++ and the INET Framework. In section three we 
describe the implementation of XCAST6 on OMNeT++ 
while in section four we describe our simulation of 
XCAST6 using OMNeT++ and discuss the results in 
section five. In the last section we give our conclusion and 
future work on XCAST6. 

2. XCAST6 OVERVIEW 
Conventional IP multicast routing protocols[5, 7] require 
maintenance of state-information relating to groups in the 
on-tree routers, usually referred to as Multicast Forwarding 
Tables (MFT) so as to forward multicast packets correctly. 
This approach is usually not advisable due to the possibility 
of the tree growing and in such cases, the state maintenance 
adds unnecessary load to the network devices such routers. 
Small group multicast variants solve this problem together 
with the scalability issue of the conventional IP multicast. 
XCAST6 refers to the implementation of explicit 
multiunicast on IPv6[4,13]. In contrast to the conventional 
IP Multicast and other multicast variants, in XCAST6, the 
sender explicitly specifies the destination addresses of all 
the receivers as a list of unicast addresses embedded in the 
IPv6 packet header. Succinctly, the sender embeds a list of 
destinations in the routing extension header of the IPv6 
packet, puts the nearest destination in the destination 
address field of the IPv6 packet then sends the packet to a 
router. Along the transmission path, each router examines 
the IPv6 packet header in order to determine the next-hop 
for each destination specified in the list. The router then 
groups together the destinations with the same next-hop, 
and finally forwards a packet with an appropriate XCAST6 
header to each of the identified next hops. The process is 
repeated until all the destinations are reached and when 
there is only one destination left in the list, the XCAST6 
packet can be transmitted as an ordinary unicast packet. 

Together with list of destinations, the XCAST6 header also 
comprises of a bitmap that the routers use to determine 
which of the embedded destinations the packet needs to be 
delivered and to which ones the packet has already been 
delivered[13]. The bits in the bitmap correspond to each of 
the embedded destinations. Therefore if a bit corresponding 
to a given destination is set to 1, it means the packet needs 
to be delivered to that destination. Each of the branching 
routers updates this bitmap for each copy of XCAST6 
packet during replication. 

In figure 1, the sender(A) sends an XCAST6 packet to 
B,C,D and E. The destination addresses B,C,D,E have 
corresponding bitmaps which if set means the packet is to 
be delivered to a corresponding destination and if reset, 
means otherwise. On each XCAST6 router, if need be, the 
XCAST6 packet is duplicated, bitmaps updated and 

delivered  upward according to the destination's next hop 
with respect to the current branching router. 

 
Figure 1. XCAST6 Overview 

2.1 OMNET++ 
Object Modular Network Testbed in C++ 
(OMNeT++)[18,19] is an open source, extensible, modular, 
component-based simulation library and framework. 
Because of its generic architecture, OMNeT++ is used in 
simulating a wide range of networks.  Domain-specific 
functionality such as support for sensor networks, wireless 
ad-hoc networks, Internet protocols, performance modeling, 
photonic networks, etc., is provided by model frameworks, 
developed as independent projects such as the INET 
Framework, INETMANET, xMIPV6 and MiXiM among 
others. OMNeT++ is a collection of hierarchically nested 
modules which communicate with each other using 
message passing and messages may carry arbitrary data 
structures. The depth of module nesting is unlimited. 
Modules can be connected with each other via gates (other 
systems would call them ports) and channels. Channels can 
posses certain bandwidth, delay and loss characteristics. 
The modules can also be combined to form compound 
modules. Modules at the lowest level of the hierarchy are 
called simple modules and they encapsulate the model 
behavior. Simple modules are programmed in C++ and 
make use of the simulation library. In the hierarchy, the 
top-most module is called the System Module or Network 
and contains one or more sub-modules each of which could 
contain other sub-modules. 

The structure of the model and that of the modules are 
defined using a special language called NED (Network 
Description) language. Each module is usually defined in a 
separate NED file. Among the features of NED that makes 
it scale well to large projects are its component-based 
approach and hierarchical nature. NED supports inheritance 
therefore modules and channels can be easily sub-classed. 
Derived modules and channels can add new parameters, 
gates and even new submodules. NED also uses a Java-like 
package structure to reduce the risk of name clashes 
between different models. 



OMNeT++ offers an Eclipse-based IDE, a graphical 
runtime environment, and a host of other tools which 
support features for development, debugging, running 
simulations and for visualization and analyses of 
simulation results. However, for larger networks and more 
complex simulations, OMNeT++ also has a command line 
simulation environment that allows for dedication of more 
computing resources to simulation rather than being 
consumed in supporting the GUI functionalities. There are 
extensions for real-time simulation, network emulation, 
alternative programming languages (Java, C\#), database 
integration, System C integration, and several other 
functions. 

2.2 The INET Framework 
The INET Framework[17] builds upon OMNeT++ and 
uses the same concept of modules and messages whereby 
modules communicate with each other by message passing. 
It is organized into protocol layers that nearly mirror the 
OSI reference model. Specifically, the INET Framework 
contains models for several wired and wireless networking 
protocols in the Link, Network and Transport layers of the 
protocol stack. Support for mobility and wireless 
communication has been derived from the Mobility 
Framework project[9]. Some of the implemented protocols 
include: UDP, TCP, SCTP, IP, IPv6, Ethernet, PPP, 802.11, 
MPLS, OSPF, and many others. It implements the MPLS 
model with RSVP-TE and LDP signaling. 

The INET Framework represents protocols by simple 
modules whose behaviours are defined in a C++ class of 
the same name.  However, a simple module's external 
interface such as gates (connectors) and parameters is 
described in an NED file. To describe protocol headers and 
packet formats, the INET framework uses message 
definition files (msg files) which are translated into C++ 
classes by OMNeT++'s opp_msgc tool. The generated 
message classes subclass from OMNeT++'s cMessage class. 

However, not all modules in the INET Framework 
implement protocols. Some are used to execute specific 
non-protocol related tasks. There are modules which hold 
data (for example RoutingTable), facilitate communication 
between modules (NotificationBoard), perform 
autoconfiguration of a network (FlatNetworkConfigurator), 
move a mobile node around (for example 
ConstSpeedMobility) and perform housekeeping associated 
with radio channels in wireless simulations 
(ChannelControl). 

Modules in the INET Framework can be freely combined 
to form hosts and other network devices with the NED 
language without C++ code or the need for recompilation 
whatsoever. Therefore, there are some common modules 
that appear in all (or many) host, router and device models 
such as InterfaceTable, RoutingTable and 
NotificationBoard modules. 

Modules communicate by message passing and so are the 
protocol layers. When an upper-layer protocol wants to 
send a data packet over a lower-layer protocol, the upper-
layer module sends the message object representing the 
packet to the lower-layer module. The lower layer protocol 
module then encapsulates the message and sends it out. 
When a lower layer protocol wants to send a packet to an 
upper layer protocol, it removes lower layer information 
from the packet (decapsulation) then sends the message to 
an upper protocol layer module. 

Extra information such as connection identifiers, 
destination addresses, and parameters like the packet TTL 
are often needed to be transmitted together with the packets 
between the protocol layers. This extra information is 
attached to the message object as Controlinfo. Controlinfo 
are small value objects, which are attached to packets 
(message objects) with its setControlInfo() member 
function. Controlinfo only holds auxiliary information for 
the next protocol layer, and is not supposed to be sent over 
the network to other hosts and routers. 

3. IMPLEMENTING XCAST6 IN OMNeT++ 
XCAST and AMT are some of the Scalable Adaptive 
Multicast protocols currently not supported by most of the 
existing network simulators, especially when analyzing 
hybrid multicast protocols[14]. In [14], Kolberg et al have 
proposed an implementation of XCAST for Oversim and 
OMNeT++ which in the current state, is only on the IPv4 
protocol stack of INET Framework. Additionally, their 
implementation is an XCAST model whereby an XCAST 
packet gets duplicated at branching nodes and fewer 
addresses are attached to each copy of the packet until each 
copy reverts back to a unicast IP/UDP message as the 
packet traverses the network. This complex header 
reconstruction at every branch can be reduced to a simple 
operation of updating a bitmap[4, 13] in the XCAST6 
header and leaving the destinations intact in all copies of 
the XCAST6 packets. Furthermore, the use of bitmaps 
instead of the header reconstruction has the advantage that 
it allows for the possibility of using XCAST with IPSec 
since only the bitmap is changed and not the entire IPv6 
header.  
Since our main research on XCAST is in the area of real 
world deployment of XCAST6 version 2.0[13], our 
motivation is to realize an XCAST6 simulation 
environment which can complement our real world 
XCAST6 deployment when faced with time and resource 
constraints. Therefore, our target in OMNeT++ was the 
implementation of XCAST simulation on the IPv6 stack. In 
our work, in addition to targeting the IPv6 stack of 
OMNeT++'s INET Framework, we also implement the 
XCAST6 concept where the bitmaps are used instead of the 
complex header reconstruction[4, 13]process. Our 
approach also utilizes much of the functionalities in the 
INET Framework's network layer modules with significant 



changes done only in the network layer modules. Since the 
key nodes such as  Router6 and StandardHost6 modules 
inherit from most of the network layer modules like IPv6 
and IPv6ControlInfo modules, our implementation does not 
require any adaptation whatsoever to the existing 
StandardHost6 and Router6 modules. Therefore sample 
networks can be generated using any existing tools such as 
OMNeT++ IDE or ReaSE[10] without any other need for 
adaptation. The subsequent subsections describe our 
implementation in each of the layers of INET Framework. 
 

3.1 Network Layer 
The greatest impact of XCAST6 is in the network layer of 
the INET Framework. We derived a number of classes to 
implement XCAST6 functionality while some other classes 
were only slightly altered by adding a few lines for 
XCAST6 specific functionality. As specified in [4, 13], 
XCAST6 destinations and the bitmap are contained in the 
IPv6 routing extension headers. We modified the 
IPv6ExtensionHeader.msg file to include these XCAST6 
specific attributes in the INET Framework's IPv6 routing 
extension header. This in effect adds these two data 
containers into the generated IPv6ExtensionHeader class. 
To facilitate inter-protocol layer transmission of XCAST6 
controls, we added the XCAST6 traffic class, destination 
addresses list and the bitmap in the IPv6ControlInfo 
Module. Traffic class of XCAST6 header is "010111XX", 
which is "23" in decimal notation, so any IPv6 traffic in the 
simulation with traffic class of 23 ("010111XX") is 
recognized as XCAST6 traffic and this information is 
shared between protocol layers using the IPv6ControlInfo 
module. The IPv6Datagram module was also amended to 
be able to handle the new XCAST6-capable extension 
header modules. 

In INET Framework, routing decisions are made in the IP 
layer. We amended the IPv6 class to allow for XCAST6-
aware routing. We added a method called 
routeXcast6Packet() in the IPv6 class and also amended its 
message handling method to be able to identify XCAST6 
messages and handle them by invoking our new XCAST6 
routing method. 

The IPv6FlatNetworkConfigurator that comes with 
OMNeT++'s INET Framework assumes that all nodes are 
in the same subnetwork. To work with numerous subnets, 
we used a NETCONF-style XML file detailing routing 
tables of the nodes within the network. We therefore 
modified the RoutingTable6 class such that at stage3 of the 
initialization process it invoked our newly defined method 
called parseXMLConfigFileForStaticRoutes(). In this 
method we parse the XML routing file and use the route 
information to either invoke the addDefaultRoute() or 
addStaticRoute() methods of the RoutingTable6 class. 

3.2 Transport Layer 
In INET, the source and destination addresses of a UDP 
datagram are defined in the UDPControlInfo module. We 
therefore modified this module to be able to handle 
multiple destinations as required by XCAST6. In [4, 13], 
the XCAST6 header is defined such that the destination 
address of the outer IPv6 header is that of 
ALL_XCAST_NODES, given in the range of IPv6 multicast 
addresses as "ff0e::114". The destination address used by 
the UDPControlInfo module in our implementation also 
uses the ALL_XCAST_NODES while the list of unicast 
destinations and the bitmap are contained in our newly 
defined containers in this module. 

There is no further modifications and derivations needed in 
the implementation of UDP protocol since we use 
UDPControlInfo and IPv6ControlInfo to exchange the 
XCAST6 information between protocol layers in the stack 
and just before transmitting the message across the network, 
we add the XCAST6 information into the IPv6Datagram 
message. 

3.3 Application Layer 
We developed a simple UDP application which can be used 
to test XCAST6 in OMNeT++. It is based on the 
UDPBasicApp that comes with INET Framework. 
However we implemented in it the ability to specify a 
parameter with the list of IP addresses to be used as 
XCAST6 receivers from the omnet.ini file. In simulation 
models with several nodes and only a set of them need to 
form an XCAST6 group, it is possible to specify a number 
of groups and the IP addresses of the members of the group. 
The application then delivers data to all members of the 
specified group. In the INET's UDPBasicApp example the 
application randomly picks one address and sends data to it. 
We improved on this such that when simulating on 
XCAST6, it is possible to specify a list of groups, of course 
each group also has a list of its members. Our application 
can randomly select a group and deliver a UDP packet to 
all members of that group. 

3.4 Statistics Collection 
Our implementation also collects various information about 
XCAST6 packets on each of the nodes in the model. For 
example we collect information on how many XCAST6 
packets have been delivered locally, forwarded by a router, 
processed by a given node, sent out by the sending node 
and the number of replications that a router performs 
during each simulation run. We shall add more features to 
this functionality. 

4. SIMULATIONS 
We used OMNeT++ IDE to define a model network with a 
topology similar to the one shown in figure 2 comprising of 
hosts, routers and switches. The model network had seven 
subnetworks with six routers connected to each subnetwork 



by an Ethernet switch. In each subnet, we defined ten IPv6 
hosts connected to the Ethernet switches by bidirectional 
links. We considered a simple case where there is only one 
XCAST6 sender, the host connected to router R1, while all 
the remaining 70 hosts were receivers. All the links were 
assumed to have the same bandwidth and equal chances of 
packet loss. The sender's message frequency was assigned 
to 0.9s in the omnet.ini file. 
 

 
Figure 2. Testbed 

4.1 Simulation scenario 
We are interested in investigating XCAST behavior at 
different points in the network, namely the sender side, the 
core and the edge of the network. We therefore investigate 
the number of XCAST6 packets circulating in the network 
at each of these 3 distinct points in different simulation 
scenarios. We defined test scenarios by changing the 
number of receivers in each case. This changes the length 
of XCAST6 header and the number of locally attached 
hosts for the routers each time. We then monitored the 
impact of the number of receivers on XCAST6 on each of 
the routers at various points in the network. Table 1 
summarizes each of these test scenarios. 
 

5. PERORMANCE EVALUATION 
Several performance metrics have been defined to 
characterize the multicast communication service and its 
impact on the network[8, 15]. 
 

Table 1. Summary of the simulation scenarios 

Scenario Total 
Receivers Receivers per subnet 

1 70 All subnets: 10 

2 60 Subnets 1 and 2: 5 
Other subnets: 10 

3 60 Subnets 6 and 7: 5 
Other subnets: 10 

4 50 
Subnets 6 and 7: 5 
Subnets 3,4,5: 7 

Subnet 1: 9 

5 40 
Subnets 3,4,5,6,7: 5 

Subnet 1: 7 
Subnet 2: 8 

 

The most important ones being stress (both link and node 
stress), link stretch, time to first packet, control overheads 
and efficiency. We measured some of these metrics for 
XCAST6 as discussed in the subsections that follow. 

5.1 Stress (Node Stress) 
This is defined in terms of the number of identical packets 
a physical link (link stress) or a node (node stress) carries 
in a network. Clearly for XCAST6, the link stress is 1 
because no packet is sent repeatedly over the same link. 
However we measured the node stress since at each 
branching point, the XCAST algorithm states that the 
router duplicates the packet according to the number of the 
next hops. For our model network routers R1 and R2 have 
no branches hence the stress is minimal and incurred only 
in destination lookups for the embedded XCAST6 
destinations.  

 
Figure 3. Average stress per router for a group of 70 

nodes 
To calculate the average stress at the branching routers, we 
define a number of variables. We define K to be the 
number of packets sent by the sender, L as the number of 
locally attached receivers of the packet, N the number of 
unique next hops for each of the destinations in the 
XCAST6 header and T the time interval for each 
measurement split into (i) time slots. For each of the 
routing node (h), we used the variables K, L, N and T to 
formulate the simple equation (1) which we used in 
calculating the average stress (λ). 
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In all scenarios, we observe that it takes sometime before 
the stress level stabilizes. We observed that a lot of 
Neighbor Discovery and Router Advertisement Packets are 
exchanged in the network over the same period of time so 
we attribute the shape of graph at those points to these kind 
of exchange messages. Using equation (1) we calculated 
the average node stress at intervals of 50 seconds based on 
emitted XCAST6 statistical signals. Figure 3 shows the 
results for the first scenario with 70 receivers. 



Router R3 registers a constant low average stress of 
approximately 2 which corresponds to the expected unique 
next hops while router R5 registers the highest stress level 
averaging to approximately 36. This is because of the 
several receivers that are locally attached to it. Routers R4 
and R6 with the same number of locally attached receivers 
register nearly similar level of stress but that of router R4 is 
slightly higher because router R4 also has router R6 as the 
next hop for all XCAST6 packets destined to subnetworks 
6 and 7. 

We reduced the receivers to 60 but conducted two tests by 
changing the number of locally attached receivers on 
routers R4 and R6. Figure 4 shows the results when the 
number of receivers attached to router R4 were reduced to 
10 (5 in each subnet for subnets 1 and 2) while retaining 
locally attached receivers on router R6 at 20, (10 in each 
subnet for subnets 6 and 7). 

 
Figure 4. Average stress per router for a group of 60 

nodes (case one) 
The stress on R4 reduces while that on R6 remains at the 
same level registered in the first simulation scenario. The 
reduction of the number of receivers from 70 to 60 only 
impacts on router R4 in the entire model. 

 
Figure 5. Average stress per router for a group of 60 

nodes (case two) 
Figure 5 shows that the impact of changing locally attached 
hosts is noted on routers R6 and R4 while the rest of the 

routers in the model are unaffected despite the fact that the 
total number of receivers has been reduced to 60. 

The fourth scenario had a group size of 50 receivers only 
and host distributed as summarized in table 1. A 
considerable reduction in stress on router R5 is seen as 
indicated in Figure 6.   

 
Figure 6. Average stress per router for a group size of 

50 nodes 
In our final scenario, we reduced the number of receivers to 
40. For comparison we had 15 locally attached receivers on 
router R4 and R5 but router R4 also has  a next hop for all 
packets destined to subnetworks 6 and 7. Figure 7 shows 
that router R4 registered the highest stress level since it had 
more hosts than all the others. In all scenarios, router R3 
recorded the least nodal stress. 

We therefore note that an important point on effectiveness 
of XCAST6 protocol is that it enhances the Internet 
philosophy of pushing all the loads to the edge networks, 
away from the core. 

 
Figure 7. Average stress per router for a group size of 

40 nodes 
We observe that only the edge routers registered higher 
stress levels depending on the number of locally attached 
receivers and the next hops of the packets being transmitted. 



5.2 End-to-End delay 
We also measured the average end-to-end delay during 
each of the above scenarios. Using the NICE overlay 
protocol implemented in OverSim[1], we used the same 
network model to compare the time delays in XCAST6 and 
Application Layer Multicast (ALM) and results are shown 
in figure 8. This also acts as an indicator of the processing 
overhead incurred by XCAST6 due to the increased packet 
header complexity as compared to ALM. However, 
XCAST6 is targeting small groups and the difference in 
end-to-end delay noted is also very small considering it is 
in the range of very minor fractions of a second. 
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Figure 8. End-to-End Delay 

5.3 Cost overhead rate 
Considering that the result of section 5.2 shows a likely 
impact of the XCAST6 header complexity as a processing 
overhead, we compare XCAT6 and multicast based on a 
factor we define as the cost overhead rate. This is 
calculated using the number of packets that XCAST6 can 
generate if used in networks of hosts with varying MTUs 
such as the Internet. We define the following variables for 
this comparison: HDR to be the size of IPv6 header, ADR 
to be the size of an IPv6 address, N to the number of 
XCAST6 receivers. THDR to be the length of the transport 
protocol header and P to be the size of the payload data to 
be delivered in an XCAST6 message. We assume that each 
bit of the bitmap requires only 1 unit of data to store. 

 
Figure 9. XCAST6/Multicast Cost overhead ratio 

The number of XCAST6 packets generated to transmit a 
data of payload length P over an link with a given MTU 
can be calculated as: 

MTU
PTHDRNADRNHDRPNf x
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Where 2 is added to represent the bytes for storing the size 
of the bitmap and also the length of the header in the IPv6 
routing extension header. For the same data, the number of 
packets required by Multicast will be: 

(2) 
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The reduced ratio of equation (2) and (3) can be defined as 
the XCAST6 gain on Multicast and it comes to: 
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We note that for IPv6, the ADR will be 16 bytes and when 
we plot equation 4 above for upto 70 destinations against 
the payload size of between 250 bytes and 2000 bytes we 
find the resulting comparison as shown in figure 9. The 
value of the cost overhead rate goes as high 5.5 when there 
are many destinations and the payload length is shorter but 
for a majority of cases the rate is between 2 and 2.5 
especially for fewer destinations and payload length of 
between 1000 bytes and 1400 bytes. Considering that the 
MTU for common Network Interface cards is at 1500 bytes, 
it implies that XCAST6 bears a low overhead for the 
typical communication scenarios. 

6. CONCLUSION AND FUTURE WORK 
This paper presents a work in progress in implementing 
XCAST6 on OMNeT++ simulation environment. We have 
shown how to implement XCAST6 on OMNeT++ and we 
chose an approach that would ensure that all existing host 
modules of OMNeT++ can work without any need for 
alteration. We have also implemented various signaling 
information for statistical data collection in the model and 
used these to measure the stress node due to XCAST 
packet replication. We have confirmed that the simulation 
works correctly. As a further work we intend to implement 
XCAST6 QoS using this simulation tool and compare 
various multicast QoS policies against XCAST6. We shall 
also implement additional performance metrics in the 
model. We intend to use the XCAST6 simulation to 
complement our current research on real world deployment 
especially in projects where time and resource constraints 
can affect delivery when trying to test an XCAST6 
characteristic on a large scale in a real network. 
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