

Quantitative Simulation of XCAST6 Performance Using

OMNeT++
Odira Elisha Abade

Graduate School of Engineering,
Nagoya University, Japan

abade@ucl.nuee.nagoya-
u.ac.jp

Katsuhiko Kaji
Graduate School of Engineering,

Nagoya University, Japan

kaji@nuee.nagoya-u.ac.jp

Nobuo Kawaguchi
Graduate School of Engineering,

Nagoya University, Japan

kawaguti@nagoya-u. jp

ABSTRACT
Explicit multiunicast (XCAST) is a form of small group multicast
in which the sender embeds IP addresses of all receiving nodes in
a special header and sends it with all data packets. On sending,
each XCAST-aware router in the path examines the packet and
partitions the destinations into various sets based on their next
hops. For each set, the router uses a bitmap in the packet header to
ensure that each copy of the packet is delivered only to
destinations whose corresponding bits in the bitmap are set to 1.
Sometimes real world implementation of XCAST6 can take a
long time to deploy and resource constraints can limit the scale of
testing that can be done. We have therefore integrated XCAST6
into the IPv6 stack of INET Framework for OMNeT++ to allow
for large-scale, exhaustive and realistic investigation of XCAST6
characteristics and to complement our current research into real
world deployment of XCAST6. The contribution of this paper is
two fold. First, it describes our implementation of XCAST6 in
OMNeT++'s INET framework. Secondly, it experimentally shows
the effectiveness of XCAST6 with regards to various multicast
performance metrics such as stress, end-to-end delay, efficiency
and packet processing overhead rate.

Categories and Subject Descriptors
C.2.2 [Computer-Communication Networks]: Network
Protocols.

C.4 [Performance of Systems]: Performance attributes.

General Terms
Performance, Quantitative.

Keywords
XCAST6, Simulation, INET framework, OMNeT++.

1. INTRODUCTION
Numerous multicast technologies have been proposed to
ensure efficient utilization of Internet bandwidth for group
communication. Even though IP Multicast is conceptually
able to provide efficient group communication and utilize

the available bandwidth efficiently[6], its global
deployment has not been effectively realized. This has
majorly been due to security issues, efficient congestion
control scheme and need for special support in the network
devices[11]. However, there exist local networks that are
multicast capable[16] and are used to deliver TV and
Telephony services. Multicast was originally targeted at
very large groups but there also exist group communication
applications such as video conferencing, IP telephony and
online multiplayer games which only require a large
number of distinct, small groups and cannot be served well
with the traditional IP multicast. Small group, multi-
destination multicast variants have therefore been proposed
specifically to serve this class of applications.

Explicit multiunicast (XCAST)[4] is a form of small group
multicast in which the sender embeds IP addresses of all
receiving nodes in a special header which it then sends
with every data packet. During transmission, each XCAST-
aware router in the path examines the packet, looks up the
next hop routers for each of the embedded destination
addresses and partitions the destinations into various sets
based on their next hops. For each set, the router uses a
bitmap in the packet header to ensure that each copy of the
packet is delivered only to destinations whose
corresponding bits in the bitmap are set to 1.

Deployment of XCAST in the real world has been a subject
of research[12,3]. In [2,3] we have proposed a simple
routing engine for realizing this but we are also cognizant
of the fact that sometimes real world implementations can
take a very long time to realize and resource constraints can
limit the scale of testing that can be done. A simulation
environment for XCAST6 is therefore necessary. However
most of the existing simulators do not have multicast
routing models required by small group multicast protocols
such as XCAST.

Kolberg and Burford[14], in their project of extending
OMNeT++ for Scalable Adaptive Multicast simulations,
have come up with XCAST and AMT implementations for
the Oversim simulator[1]. Their work however currently
supports only simulation of XCAST on the IPv4 stack. On
the other hand, our current research on XCAST6
deployment in the real world is based on XCAST6 version
2.0[13] hence we found it necessary to extend the IPv6

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
AINTEC’11 November 9–11 2011 Bangkok Thailand

stack of the INET Framework[17] in OMNeT++[18,19] to
allow for simulation of our current research.

In the next section we briefly describe XCAST6,
OMNeT++ and the INET Framework. In section three we
describe the implementation of XCAST6 on OMNeT++
while in section four we describe our simulation of
XCAST6 using OMNeT++ and discuss the results in
section five. In the last section we give our conclusion and
future work on XCAST6.

2. XCAST6 OVERVIEW
Conventional IP multicast routing protocols[5, 7] require
maintenance of state-information relating to groups in the
on-tree routers, usually referred to as Multicast Forwarding
Tables (MFT) so as to forward multicast packets correctly.
This approach is usually not advisable due to the possibility
of the tree growing and in such cases, the state maintenance
adds unnecessary load to the network devices such routers.
Small group multicast variants solve this problem together
with the scalability issue of the conventional IP multicast.
XCAST6 refers to the implementation of explicit
multiunicast on IPv6[4,13]. In contrast to the conventional
IP Multicast and other multicast variants, in XCAST6, the
sender explicitly specifies the destination addresses of all
the receivers as a list of unicast addresses embedded in the
IPv6 packet header. Succinctly, the sender embeds a list of
destinations in the routing extension header of the IPv6
packet, puts the nearest destination in the destination
address field of the IPv6 packet then sends the packet to a
router. Along the transmission path, each router examines
the IPv6 packet header in order to determine the next-hop
for each destination specified in the list. The router then
groups together the destinations with the same next-hop,
and finally forwards a packet with an appropriate XCAST6
header to each of the identified next hops. The process is
repeated until all the destinations are reached and when
there is only one destination left in the list, the XCAST6
packet can be transmitted as an ordinary unicast packet.

Together with list of destinations, the XCAST6 header also
comprises of a bitmap that the routers use to determine
which of the embedded destinations the packet needs to be
delivered and to which ones the packet has already been
delivered[13]. The bits in the bitmap correspond to each of
the embedded destinations. Therefore if a bit corresponding
to a given destination is set to 1, it means the packet needs
to be delivered to that destination. Each of the branching
routers updates this bitmap for each copy of XCAST6
packet during replication.

In figure 1, the sender(A) sends an XCAST6 packet to
B,C,D and E. The destination addresses B,C,D,E have
corresponding bitmaps which if set means the packet is to
be delivered to a corresponding destination and if reset,
means otherwise. On each XCAST6 router, if need be, the
XCAST6 packet is duplicated, bitmaps updated and

delivered upward according to the destination's next hop
with respect to the current branching router.

Figure 1. XCAST6 Overview

2.1 OMNET++
Object Modular Network Testbed in C++
(OMNeT++)[18,19] is an open source, extensible, modular,
component-based simulation library and framework.
Because of its generic architecture, OMNeT++ is used in
simulating a wide range of networks. Domain-specific
functionality such as support for sensor networks, wireless
ad-hoc networks, Internet protocols, performance modeling,
photonic networks, etc., is provided by model frameworks,
developed as independent projects such as the INET
Framework, INETMANET, xMIPV6 and MiXiM among
others. OMNeT++ is a collection of hierarchically nested
modules which communicate with each other using
message passing and messages may carry arbitrary data
structures. The depth of module nesting is unlimited.
Modules can be connected with each other via gates (other
systems would call them ports) and channels. Channels can
posses certain bandwidth, delay and loss characteristics.
The modules can also be combined to form compound
modules. Modules at the lowest level of the hierarchy are
called simple modules and they encapsulate the model
behavior. Simple modules are programmed in C++ and
make use of the simulation library. In the hierarchy, the
top-most module is called the System Module or Network
and contains one or more sub-modules each of which could
contain other sub-modules.

The structure of the model and that of the modules are
defined using a special language called NED (Network
Description) language. Each module is usually defined in a
separate NED file. Among the features of NED that makes
it scale well to large projects are its component-based
approach and hierarchical nature. NED supports inheritance
therefore modules and channels can be easily sub-classed.
Derived modules and channels can add new parameters,
gates and even new submodules. NED also uses a Java-like
package structure to reduce the risk of name clashes
between different models.

OMNeT++ offers an Eclipse-based IDE, a graphical
runtime environment, and a host of other tools which
support features for development, debugging, running
simulations and for visualization and analyses of
simulation results. However, for larger networks and more
complex simulations, OMNeT++ also has a command line
simulation environment that allows for dedication of more
computing resources to simulation rather than being
consumed in supporting the GUI functionalities. There are
extensions for real-time simulation, network emulation,
alternative programming languages (Java, C\#), database
integration, System C integration, and several other
functions.

2.2 The INET Framework
The INET Framework[17] builds upon OMNeT++ and
uses the same concept of modules and messages whereby
modules communicate with each other by message passing.
It is organized into protocol layers that nearly mirror the
OSI reference model. Specifically, the INET Framework
contains models for several wired and wireless networking
protocols in the Link, Network and Transport layers of the
protocol stack. Support for mobility and wireless
communication has been derived from the Mobility
Framework project[9]. Some of the implemented protocols
include: UDP, TCP, SCTP, IP, IPv6, Ethernet, PPP, 802.11,
MPLS, OSPF, and many others. It implements the MPLS
model with RSVP-TE and LDP signaling.

The INET Framework represents protocols by simple
modules whose behaviours are defined in a C++ class of
the same name. However, a simple module's external
interface such as gates (connectors) and parameters is
described in an NED file. To describe protocol headers and
packet formats, the INET framework uses message
definition files (msg files) which are translated into C++
classes by OMNeT++'s opp_msgc tool. The generated
message classes subclass from OMNeT++'s cMessage class.

However, not all modules in the INET Framework
implement protocols. Some are used to execute specific
non-protocol related tasks. There are modules which hold
data (for example RoutingTable), facilitate communication
between modules (NotificationBoard), perform
autoconfiguration of a network (FlatNetworkConfigurator),
move a mobile node around (for example
ConstSpeedMobility) and perform housekeeping associated
with radio channels in wireless simulations
(ChannelControl).

Modules in the INET Framework can be freely combined
to form hosts and other network devices with the NED
language without C++ code or the need for recompilation
whatsoever. Therefore, there are some common modules
that appear in all (or many) host, router and device models
such as InterfaceTable, RoutingTable and
NotificationBoard modules.

Modules communicate by message passing and so are the
protocol layers. When an upper-layer protocol wants to
send a data packet over a lower-layer protocol, the upper-
layer module sends the message object representing the
packet to the lower-layer module. The lower layer protocol
module then encapsulates the message and sends it out.
When a lower layer protocol wants to send a packet to an
upper layer protocol, it removes lower layer information
from the packet (decapsulation) then sends the message to
an upper protocol layer module.

Extra information such as connection identifiers,
destination addresses, and parameters like the packet TTL
are often needed to be transmitted together with the packets
between the protocol layers. This extra information is
attached to the message object as Controlinfo. Controlinfo
are small value objects, which are attached to packets
(message objects) with its setControlInfo() member
function. Controlinfo only holds auxiliary information for
the next protocol layer, and is not supposed to be sent over
the network to other hosts and routers.

3. IMPLEMENTING XCAST6 IN OMNeT++
XCAST and AMT are some of the Scalable Adaptive
Multicast protocols currently not supported by most of the
existing network simulators, especially when analyzing
hybrid multicast protocols[14]. In [14], Kolberg et al have
proposed an implementation of XCAST for Oversim and
OMNeT++ which in the current state, is only on the IPv4
protocol stack of INET Framework. Additionally, their
implementation is an XCAST model whereby an XCAST
packet gets duplicated at branching nodes and fewer
addresses are attached to each copy of the packet until each
copy reverts back to a unicast IP/UDP message as the
packet traverses the network. This complex header
reconstruction at every branch can be reduced to a simple
operation of updating a bitmap[4, 13] in the XCAST6
header and leaving the destinations intact in all copies of
the XCAST6 packets. Furthermore, the use of bitmaps
instead of the header reconstruction has the advantage that
it allows for the possibility of using XCAST with IPSec
since only the bitmap is changed and not the entire IPv6
header.
Since our main research on XCAST is in the area of real
world deployment of XCAST6 version 2.0[13], our
motivation is to realize an XCAST6 simulation
environment which can complement our real world
XCAST6 deployment when faced with time and resource
constraints. Therefore, our target in OMNeT++ was the
implementation of XCAST simulation on the IPv6 stack. In
our work, in addition to targeting the IPv6 stack of
OMNeT++'s INET Framework, we also implement the
XCAST6 concept where the bitmaps are used instead of the
complex header reconstruction[4, 13]process. Our
approach also utilizes much of the functionalities in the
INET Framework's network layer modules with significant

changes done only in the network layer modules. Since the
key nodes such as Router6 and StandardHost6 modules
inherit from most of the network layer modules like IPv6
and IPv6ControlInfo modules, our implementation does not
require any adaptation whatsoever to the existing
StandardHost6 and Router6 modules. Therefore sample
networks can be generated using any existing tools such as
OMNeT++ IDE or ReaSE[10] without any other need for
adaptation. The subsequent subsections describe our
implementation in each of the layers of INET Framework.

3.1 Network Layer
The greatest impact of XCAST6 is in the network layer of
the INET Framework. We derived a number of classes to
implement XCAST6 functionality while some other classes
were only slightly altered by adding a few lines for
XCAST6 specific functionality. As specified in [4, 13],
XCAST6 destinations and the bitmap are contained in the
IPv6 routing extension headers. We modified the
IPv6ExtensionHeader.msg file to include these XCAST6
specific attributes in the INET Framework's IPv6 routing
extension header. This in effect adds these two data
containers into the generated IPv6ExtensionHeader class.
To facilitate inter-protocol layer transmission of XCAST6
controls, we added the XCAST6 traffic class, destination
addresses list and the bitmap in the IPv6ControlInfo
Module. Traffic class of XCAST6 header is "010111XX",
which is "23" in decimal notation, so any IPv6 traffic in the
simulation with traffic class of 23 ("010111XX") is
recognized as XCAST6 traffic and this information is
shared between protocol layers using the IPv6ControlInfo
module. The IPv6Datagram module was also amended to
be able to handle the new XCAST6-capable extension
header modules.

In INET Framework, routing decisions are made in the IP
layer. We amended the IPv6 class to allow for XCAST6-
aware routing. We added a method called
routeXcast6Packet() in the IPv6 class and also amended its
message handling method to be able to identify XCAST6
messages and handle them by invoking our new XCAST6
routing method.

The IPv6FlatNetworkConfigurator that comes with
OMNeT++'s INET Framework assumes that all nodes are
in the same subnetwork. To work with numerous subnets,
we used a NETCONF-style XML file detailing routing
tables of the nodes within the network. We therefore
modified the RoutingTable6 class such that at stage3 of the
initialization process it invoked our newly defined method
called parseXMLConfigFileForStaticRoutes(). In this
method we parse the XML routing file and use the route
information to either invoke the addDefaultRoute() or
addStaticRoute() methods of the RoutingTable6 class.

3.2 Transport Layer
In INET, the source and destination addresses of a UDP
datagram are defined in the UDPControlInfo module. We
therefore modified this module to be able to handle
multiple destinations as required by XCAST6. In [4, 13],
the XCAST6 header is defined such that the destination
address of the outer IPv6 header is that of
ALL_XCAST_NODES, given in the range of IPv6 multicast
addresses as "ff0e::114". The destination address used by
the UDPControlInfo module in our implementation also
uses the ALL_XCAST_NODES while the list of unicast
destinations and the bitmap are contained in our newly
defined containers in this module.

There is no further modifications and derivations needed in
the implementation of UDP protocol since we use
UDPControlInfo and IPv6ControlInfo to exchange the
XCAST6 information between protocol layers in the stack
and just before transmitting the message across the network,
we add the XCAST6 information into the IPv6Datagram
message.

3.3 Application Layer
We developed a simple UDP application which can be used
to test XCAST6 in OMNeT++. It is based on the
UDPBasicApp that comes with INET Framework.
However we implemented in it the ability to specify a
parameter with the list of IP addresses to be used as
XCAST6 receivers from the omnet.ini file. In simulation
models with several nodes and only a set of them need to
form an XCAST6 group, it is possible to specify a number
of groups and the IP addresses of the members of the group.
The application then delivers data to all members of the
specified group. In the INET's UDPBasicApp example the
application randomly picks one address and sends data to it.
We improved on this such that when simulating on
XCAST6, it is possible to specify a list of groups, of course
each group also has a list of its members. Our application
can randomly select a group and deliver a UDP packet to
all members of that group.

3.4 Statistics Collection
Our implementation also collects various information about
XCAST6 packets on each of the nodes in the model. For
example we collect information on how many XCAST6
packets have been delivered locally, forwarded by a router,
processed by a given node, sent out by the sending node
and the number of replications that a router performs
during each simulation run. We shall add more features to
this functionality.

4. SIMULATIONS
We used OMNeT++ IDE to define a model network with a
topology similar to the one shown in figure 2 comprising of
hosts, routers and switches. The model network had seven
subnetworks with six routers connected to each subnetwork

by an Ethernet switch. In each subnet, we defined ten IPv6
hosts connected to the Ethernet switches by bidirectional
links. We considered a simple case where there is only one
XCAST6 sender, the host connected to router R1, while all
the remaining 70 hosts were receivers. All the links were
assumed to have the same bandwidth and equal chances of
packet loss. The sender's message frequency was assigned
to 0.9s in the omnet.ini file.

Figure 2. Testbed

4.1 Simulation scenario
We are interested in investigating XCAST behavior at
different points in the network, namely the sender side, the
core and the edge of the network. We therefore investigate
the number of XCAST6 packets circulating in the network
at each of these 3 distinct points in different simulation
scenarios. We defined test scenarios by changing the
number of receivers in each case. This changes the length
of XCAST6 header and the number of locally attached
hosts for the routers each time. We then monitored the
impact of the number of receivers on XCAST6 on each of
the routers at various points in the network. Table 1
summarizes each of these test scenarios.

5. PERORMANCE EVALUATION
Several performance metrics have been defined to
characterize the multicast communication service and its
impact on the network[8, 15].

Table 1. Summary of the simulation scenarios

Scenario Total
Receivers Receivers per subnet

1 70 All subnets: 10

2 60 Subnets 1 and 2: 5
Other subnets: 10

3 60 Subnets 6 and 7: 5
Other subnets: 10

4 50
Subnets 6 and 7: 5
Subnets 3,4,5: 7

Subnet 1: 9

5 40
Subnets 3,4,5,6,7: 5

Subnet 1: 7
Subnet 2: 8

The most important ones being stress (both link and node
stress), link stretch, time to first packet, control overheads
and efficiency. We measured some of these metrics for
XCAST6 as discussed in the subsections that follow.

5.1 Stress (Node Stress)
This is defined in terms of the number of identical packets
a physical link (link stress) or a node (node stress) carries
in a network. Clearly for XCAST6, the link stress is 1
because no packet is sent repeatedly over the same link.
However we measured the node stress since at each
branching point, the XCAST algorithm states that the
router duplicates the packet according to the number of the
next hops. For our model network routers R1 and R2 have
no branches hence the stress is minimal and incurred only
in destination lookups for the embedded XCAST6
destinations.

Figure 3. Average stress per router for a group of 70

nodes
To calculate the average stress at the branching routers, we
define a number of variables. We define K to be the
number of packets sent by the sender, L as the number of
locally attached receivers of the packet, N the number of
unique next hops for each of the destinations in the
XCAST6 header and T the time interval for each
measurement split into (i) time slots. For each of the
routing node (h), we used the variables K, L, N and T to
formulate the simple equation (1) which we used in
calculating the average stress (λ).

∑
=

+=
T

i
hhh iNiLK

0
))()((λ (1)

In all scenarios, we observe that it takes sometime before
the stress level stabilizes. We observed that a lot of
Neighbor Discovery and Router Advertisement Packets are
exchanged in the network over the same period of time so
we attribute the shape of graph at those points to these kind
of exchange messages. Using equation (1) we calculated
the average node stress at intervals of 50 seconds based on
emitted XCAST6 statistical signals. Figure 3 shows the
results for the first scenario with 70 receivers.

Router R3 registers a constant low average stress of
approximately 2 which corresponds to the expected unique
next hops while router R5 registers the highest stress level
averaging to approximately 36. This is because of the
several receivers that are locally attached to it. Routers R4
and R6 with the same number of locally attached receivers
register nearly similar level of stress but that of router R4 is
slightly higher because router R4 also has router R6 as the
next hop for all XCAST6 packets destined to subnetworks
6 and 7.

We reduced the receivers to 60 but conducted two tests by
changing the number of locally attached receivers on
routers R4 and R6. Figure 4 shows the results when the
number of receivers attached to router R4 were reduced to
10 (5 in each subnet for subnets 1 and 2) while retaining
locally attached receivers on router R6 at 20, (10 in each
subnet for subnets 6 and 7).

Figure 4. Average stress per router for a group of 60

nodes (case one)
The stress on R4 reduces while that on R6 remains at the
same level registered in the first simulation scenario. The
reduction of the number of receivers from 70 to 60 only
impacts on router R4 in the entire model.

Figure 5. Average stress per router for a group of 60

nodes (case two)
Figure 5 shows that the impact of changing locally attached
hosts is noted on routers R6 and R4 while the rest of the

routers in the model are unaffected despite the fact that the
total number of receivers has been reduced to 60.

The fourth scenario had a group size of 50 receivers only
and host distributed as summarized in table 1. A
considerable reduction in stress on router R5 is seen as
indicated in Figure 6.

Figure 6. Average stress per router for a group size of

50 nodes
In our final scenario, we reduced the number of receivers to
40. For comparison we had 15 locally attached receivers on
router R4 and R5 but router R4 also has a next hop for all
packets destined to subnetworks 6 and 7. Figure 7 shows
that router R4 registered the highest stress level since it had
more hosts than all the others. In all scenarios, router R3
recorded the least nodal stress.

We therefore note that an important point on effectiveness
of XCAST6 protocol is that it enhances the Internet
philosophy of pushing all the loads to the edge networks,
away from the core.

Figure 7. Average stress per router for a group size of

40 nodes
We observe that only the edge routers registered higher
stress levels depending on the number of locally attached
receivers and the next hops of the packets being transmitted.

5.2 End-to-End delay
We also measured the average end-to-end delay during
each of the above scenarios. Using the NICE overlay
protocol implemented in OverSim[1], we used the same
network model to compare the time delays in XCAST6 and
Application Layer Multicast (ALM) and results are shown
in figure 8. This also acts as an indicator of the processing
overhead incurred by XCAST6 due to the increased packet
header complexity as compared to ALM. However,
XCAST6 is targeting small groups and the difference in
end-to-end delay noted is also very small considering it is
in the range of very minor fractions of a second.

0.90064187

0.900641875

0.90064188

0.900641885

0.90064189

0.900641895

0.9006419

10 20 30 40 50 60 70

Number of Receivers Per Group

P
ro

pa
ga

ti
o
n
 T

im
e
(s

)

NICE

XCAST6

Figure 8. End-to-End Delay

5.3 Cost overhead rate
Considering that the result of section 5.2 shows a likely
impact of the XCAST6 header complexity as a processing
overhead, we compare XCAT6 and multicast based on a
factor we define as the cost overhead rate. This is
calculated using the number of packets that XCAST6 can
generate if used in networks of hosts with varying MTUs
such as the Internet. We define the following variables for
this comparison: HDR to be the size of IPv6 header, ADR
to be the size of an IPv6 address, N to the number of
XCAST6 receivers. THDR to be the length of the transport
protocol header and P to be the size of the payload data to
be delivered in an XCAST6 message. We assume that each
bit of the bitmap requires only 1 unit of data to store.

Figure 9. XCAST6/Multicast Cost overhead ratio

The number of XCAST6 packets generated to transmit a
data of payload length P over an link with a given MTU
can be calculated as:

MTU
PTHDRNADRNHDRPNf x

+++++
=

21**),(

Where 2 is added to represent the bytes for storing the size
of the bitmap and also the length of the header in the IPv6
routing extension header. For the same data, the number of
packets required by Multicast will be:

(2)

MTU
PTHDRHDRPNfm

++
=),((3)

The reduced ratio of equation (2) and (3) can be defined as
the XCAST6 gain on Multicast and it comes to:

P
ADRNP

PNf
PNf

m

x 2)1(
),(
),(+++
= (4)

We note that for IPv6, the ADR will be 16 bytes and when
we plot equation 4 above for upto 70 destinations against
the payload size of between 250 bytes and 2000 bytes we
find the resulting comparison as shown in figure 9. The
value of the cost overhead rate goes as high 5.5 when there
are many destinations and the payload length is shorter but
for a majority of cases the rate is between 2 and 2.5
especially for fewer destinations and payload length of
between 1000 bytes and 1400 bytes. Considering that the
MTU for common Network Interface cards is at 1500 bytes,
it implies that XCAST6 bears a low overhead for the
typical communication scenarios.

6. CONCLUSION AND FUTURE WORK
This paper presents a work in progress in implementing
XCAST6 on OMNeT++ simulation environment. We have
shown how to implement XCAST6 on OMNeT++ and we
chose an approach that would ensure that all existing host
modules of OMNeT++ can work without any need for
alteration. We have also implemented various signaling
information for statistical data collection in the model and
used these to measure the stress node due to XCAST
packet replication. We have confirmed that the simulation
works correctly. As a further work we intend to implement
XCAST6 QoS using this simulation tool and compare
various multicast QoS policies against XCAST6. We shall
also implement additional performance metrics in the
model. We intend to use the XCAST6 simulation to
complement our current research on real world deployment
especially in projects where time and resource constraints
can affect delivery when trying to test an XCAST6
characteristic on a large scale in a real network.

7. REFERENCES
[1] The overlay simulator http://www.oversim.org/wiki.

[2] O. E. Abade, K. Kaji, and N. Kawaguchi. Design,
implementation and evaluation of a routing engine
for a multipoint communication protocol: Xcast6.
International Journal of Computer Science and
Network Security, 11(5):200–209, May 2011.

[3] O. E. Abade, N. Kawaguchi, Y. Imai, T. Kurosawa,
and E. Muramoto. Design and implementation of an
xcast6 routing engine.Internet Draft, draft-abade-
xcast20-routing-engine-spec-00.txt, October 2009.

[4] R. Boivie, N. Feldman, Y. Imai, W. Livens, and D.
Ooms. Explicit multicast (xcast) concepts and
options. RFC 5058, November 2007.

[5] S. Deering, D. Estrin, D. Farinacci, V. Jacobson, C.
Liu, and L. Wei. The pim architecture for wide-area
multicast routing. IEEE/ACM Transaction on
Networking, 4(2), April 1996.

[6] C. Diot, B. N. Leivine, B. Lyles, H. Kassem, and D.
Balensiefen. Deployment issues for the ip multicast
service and architecture. IEEE Network, 14(1):78–88,
January 2000.

[7] D.Waitzman, C.Partridge, and S.Deering. Distance
vector multicast routing protocol. RFC1075,
November 1998.

[8] A. El-Sayed, V. Roca, and L. Mathy. A survey of
proposals for an alternative group communication
service. IEEE Networks, 17(1):46–51, 2003.

[9] Mobility Framework. Mobility framework,
http://mobility-fw.sourceforge.net

[10] Gamer and M. Scharf. Realistic simulation
environments for ip-based networks. Proceedings of

1st International Workshop on OMNeT++, ICST,
Marseille, France, March 2008.

[11] T. Hardjono. and G. Tsudik. Ip multicast security:
Issues and directions. Annales de Tlcommunications,
55(1):324–340, January 2000.

[12] Y. Imai. Bsd implementations of xcast6. Proceedings
of ASiaBSDCon2008 Tokyo,, March 2008.

[13] Y. Imai, T. Kurosawa, and E. Muramoto. Xcast6
(version 2.0) protocol specification,. Internet Draft,
draft-ug-xcast20-protocol-spec-00.txt, February 2008.

[14] M. Kolberg and J. Burford. An xcast multicast
implementation for the oversim simulator. Proceedings
of Consumer Communications and Networking
Conference (CCNC), 2010 7th IEEE, January 2010.

[15] A. Popescu, D. Constantinescu, D. Erman, and D. Ilie.
A survey of reliable multicast communication.
Proceedings of the 3rd Euro-NGI conference on Next
Generation Internet Networks (NGI 2007), Trondheim,
Norway, 2007.

[16] New York Times. Cheap, ultrafast broadband? Hong
Kong has it. New York Times, http: // www. nytimes.
com/ 2011/ 03/ 06/business/06digi. html?_ r= 1s,
November 2007.

[17] A. Varga. The inet framework project site. http: //inet.
omnetpp.org/

[18] A. Vareg, OMNeT++ community site. http: //www.
omnetpp. org.

[19] [A. Varga.. The omnet++ discrete event simulation
system. Proceedings of the European Simulation
Multiconference, pages 319– 324, June 200１

	1. INTRODUCTION
	2. XCAST6 OVERVIEW
	2.1 OMNET++
	2.2 The INET Framework
	3. IMPLEMENTING XCAST6 IN OMNeT++
	3.1 Network Layer
	3.2 Transport Layer
	3.3 Application Layer
	3.4 Statistics Collection

	4. SIMULATIONS
	4.1 Simulation scenario

	5. PERORMANCE EVALUATION
	5.1 Stress (Node Stress)
	5.2 End-to-End delay
	5.3 Cost overhead rate

	6. CONCLUSION AND FUTURE WORK
	7. REFERENCES

