
INTERNET DRAFT Odira Elisha Abade
<draft-abade-xcast20-routing-engine-spec-00.txt> Nobuo Kawaguchi
 Nagoya University
 October 19, 2009
 Expires April 19, 2010.

 Design and Implementation of an XCAST6 Routing Engine

Status of this Memo

 This Internet-Draft is submitted to IETF in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that other
 groups may also distribute working documents as Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
 http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
 http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on April 19, 2010.

Copyright Notice

 Copyright (c) 2009 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents in effect on the date of
 publication of this document (http://trustee.ietf.org/license-info).
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document.

Abstract

 XCAST6 (Explicit Multiunicast on IPv6) is a new protocol defined in
 RFC 5058. In XCAST, the list of destinations is explicitly encoded
 within the data packets instead of using a multicast group address.
 Research is currently ongoing on two versions of XCAST6 and this

Abade, Kawaguchi et al. Expires April 19, 2010 [Page 1]

Internet Draft draft-abade-xcast20-engine-spec-00.txt October 2009

 document describes the design and implementation of a routing engine
 for the new version in which the use of hop-by-hop options header has
 been eliminated. This draft explains why there is a need for an
 XCAST6 routing engine, highlights the requirements for its
 implementation, the design process and how to eventually implement
 the routing engine to allow for deployment of XCAST6 protocol.

Conventions used in this document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL
 NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in
 this document are to be interpreted as described in RFC-2119
 [RFC2119].

Table of Contents

 1. Introduction
 2. XCAST6 version 2.0 headers
 2.1. The outer IPv6 header
 2.2. The inner IPv6 header
 2.3. Routing Extension header
 2.4. Transport header
 2.5. Payload
 3. What is an XCAST Engine
 3.1. Why we need an XCAST6 Routing Engine
 4. Requirements for implementing an XCAST Engine
 4.1. Filtering of XCAST6 Packets
 4.2. Synchronizing the routing tables
 4.3. Forwarding of the processed XCAST6 datagram
 4.4. Performance characteristics
 5. XCAST Engine APIs
 6. IANA Consideration
 7. Security Consideration
 8. Informative References:
 9. Authors Addresses
 10. Contributor Addresses
 11. Intellectual Property and Copyright Statements

1. Introduction

 Explicit multiunicast (XCAST) protocol specified in RFC 5058[5] is a
 new multipoint communication scheme which supports a large number of
 small sessions. This property results from the fact that in XCAST, a
 list of destination addresses is explicitly encoded within the data
 packets instead of using a multicast group address when sending
 packets from one source to multiple receivers.

Abade, Kawaguchi et al. Expires April 19, 2010 [Page 2]

Internet Draft draft-abade-xcast20-engine-spec-00.txt October 2009

 Implementation of XCAST on IPv6 is referred to as XCAST6. As
 specified in RFC 5058, in addition to two IPv6 headers and a routing
 extension header, XCAST6 utilizes hop-by-hop options header to ensure
 the XCAST6 packets are routed in the Internet. This implementation is
 referred to as XCAST6 version 1.0[5]. The contents of this header
 need to be processed by every node along the path of an IPv6
 datagram[17]. For routers, it requires deeper packet inspection
 through the slow forwarding path[1]. This and other shortcomings make
 hop-by-hop options header unpopular with the commercial hardware
 router manufacturers since it substantially increases the router’s
 CPU load[1]. This undue CPU overload can be exploited to launch a
 distributed denial of service attack[17].

 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | +-+-+ |
 + +---->|CPU|--------+ +
 | | +-+-+ | |
 + | | +
 | | v |
 + +-+-+ | +-+-+-+-+-+ +-+-+-+ +
 [....|Hop-by-hop|..]-->|IN |-+ |HW Engine| | OUT |-->|
 + +-+-+ +-+-+-+-+-+ +-+-+-+ +
 | |
 + ROUTER +
 | |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 Figure 1. Hop-by-hop header is processed is processed in the CPU.

 Due to these limitations associated with the use of hop-by-hop
 options headers, we have been researching on how to eliminate these
 headers in the implementation of XCAST6. This has resulted in us
 coming up with XCAST6 version 2.0 in which hop-by-hop options headers
 are not used in the routing process.

 XCAST6 version 2.0 eliminates the use of hop-by-hop options header
 but still challenges exist in that most of the presently available
 commercial routers are not aware of the XCAST6 packet structure and
 its processing algorithm. An alternative method on how to route these
 packets is therefore of paramount importance. This document therefore
 describes this implementation, we call, an XCAST6 routing Engine.

2. XCAST6 version 2.0 headers

 Before we describe the XCAST Engine, we seek to briefly describe the
 structure of an XCAST6 version 2.0 datagram. A detailed explanation
 and illustration of these headers are in RFC5058[5] and its
 associated upgrade Internet draft[7]. With hop-by-hop options header
 eliminated, XCAST datagram in XCAST6 version 2.0 will at minimum

Abade, Kawaguchi et al. Expires April 19, 2010 [Page 3]

Internet Draft draft-abade-xcast20-engine-spec-00.txt October 2009

 comprise of: - Two IPv6 headers, - One routing extension header, - A
 transport header (usually UDP) and - The datagram payload. Basically
 in the header format should be as shown below:

 [IPv6 (semi-permeable) header| IPv6 (inner header)| Routing header|
 Transport header| Payload]

2.1. The outer IPv6 header

 The outer IPv6 header is used for semi-permeable tunneling. In this
 IPv6 header, the values of the source and destination fields are
 changed on each node in which the XCAST6 processing occurs. The
 source address will usually be the unicast address of the source node
 or address of the last branching router, while the destination
 address will be assigned to that of the host whose IP address appears
 first in the bitmap of destinations.

 The traffic class field is assigned the value of "010111XX" which
 comprises a set of bits allocated for experimentation[14] by the IRTF
 SAM RG and those for explicit congestion notification (ECN) as
 specified in RFC 3168[16]. The flow label field is composed of a
 20-bit, three parts allocated as follows: The first 8bits are
 "01010111" while the 9th bit to 13th bit default to 00000. The 14th
 to 20th bits are for the offset of the ICMP target that specified one
 of the destinations in the address list for which ICMP reflection,
 echo replies and errors are not ignored. The next header field points
 at "IPv6 header" (41) which is the inner IPv6 header in an XCAST6
 datagram.

2.2. The inner IPv6 header

 The inner IPv6 header maintains the source address of the original
 sender while its destination address is marked as ALL_XCAST_NODES.
 This header is processed by the node or router whose address is
 specified in the destination field of the first header. If the node
 is XCAST aware, then it knows how to process the datagram using the
 XCAST algorithm. However if the node is not XCAST-aware, it simply
 drops the datagram because the address, "ALL_XCAST_NODES" is within
 the range of multicast addresses and should be ignored without any
 ICMP notification as described in RFC2463.

2.3. Routing Extension header

 The XCAST6 routing extension header is a variation of the IPV6
 routing header specified in RFC2460 and encloses the complete list of
 unicast addresses of the destination nodes. The next header and the
 header extension length fields specify type of the next header and
 the length of the routing header respectively [13]. The type value in

Abade, Kawaguchi et al. Expires April 19, 2010 [Page 4]

Internet Draft draft-abade-xcast20-engine-spec-00.txt October 2009

 an XCAST6 routing header is 253 from the experimental range as
 defined in RFC4727[14]. The fourth octet of an XCAST6 routing header
 must be set to zero. This ensures that non XCAST6-aware nodes or
 routers only drop the packets but send no ICMP errors to the datagram
 source hence eliminating possible misuse that might be exploited to
 launch DDOS spoofing attacks.

 Because the length of the routing extension header is limited, (8 by
 255 octets) the maximum number of destinations that an XCAST6
 datagram can contain is thus 126. It must be noted that this is a
 limitation posed by the routing extension header but not at all
 emanating from the XCAST algorithm.

2.4. Transport header

 This specifies the transport layer protocol for use. Most of the
 XCAST6 testing have been done with UDP for both data and multimedia
 content.

2.5. Payload

 This refers to the usual payload data. XCAST has been tested using
 both data and multimedia payload content over UDP.

3. What is an XCAST Routing Engine

 With the datagram structure described above, an XCAST6 datagram
 certainly needs a little care in handling to ensure that it shall be
 routed successfully over the Internet from the sender to the set of
 receivers in a multipoint communication session. However the
 challenge is that the commercially available routers still do not
 have this functionality inbuilt. This poses challenges to real world
 deployment of XCAST6 over the Internet.

 To break this barrier, we choose to implement a scheme in which an
 XCAST6-aware node is connected to the network core-router such that
 all XCAST6 packets inbound to the network core router are forwarded
 to this XCAST-aware node for processing. The core network router
 examines the traffic class of the inbound packets and if they match
 those of an XCAST6 packet, it forwards them to the XCAST6-aware node.
 The XCAST6-aware node applies the XCAST packet processing algorithm
 as specified in RFC5058 and sends the packets back to the core
 network router which then forwards them as explained earlier. This
 XCAST6-aware node therefore acts an "XCAST6 software router" and
 ensures proper routing of XCAST6 packets even if the core network
 router is not XCAST6-capable. This "software router" is what we refer
 to as an "XCAST6 Routing Engine".

Abade, Kawaguchi et al. Expires April 19, 2010 [Page 5]

Internet Draft draft-abade-xcast20-engine-spec-00.txt October 2009

 Outbound Interfaces
 | | |
 | | |
 | | |
 |(2) |(3) |(4)
 +-----------------+ Filtered XCAST6
 | NETWORK |(5) Packets +-------------------+
 | ROUTER +------------------->| XCAST6 ENGINE |
 | |Routing Table + +
 |+-+-+-+-+-+-+-+ +Synchronization | +-+-+-+-+-+-+-+ |
 ||Routing Table|<-|--------------------+->|Routing Table| +
 |+-+-+-+-+-+-+-+ +(6)Processed packets| +-+-+-+-+-+-+-+ |
 |(SNMP/NETCONF) |<-------------------+ (SNMP/NETCONF) +
 +-----------------+ | XCAST6 processing|
 | (1) +-------------------+
 |
 |
 |
 |
 Packets Inbound
 to the Network router

 Figure 2

3.1. Why we need an XCAST6 Routing Engine

 The reasons for implementing an XCAST6 Routing Engine therefore are:
 - A lot of investments are already in place in terms of existing
 commercial routers that are not XCAST6-aware and cannot be
 eliminated. - Hop by hop options header that we used in XCAST6
 version 1.0 are susceptible to distributed denial of service attacks
 hence it is unpopular among commercial router vendors and we had to
 change that. - Currently, deployment of XCAST6 is not easy.

4. Requirements for implementing an XCAST Routing Engine

 For the implementation of an XCAST6 Routing Engine we have a basic
 set of requirements namely: - An XCAST6 enabled computer. Currently
 XCAST6 implementations exist for LINUX, FreeBSD and other BSD
 operating systems. - The network core router should be able to
 support policy routing especially filter based forwarding scheme. -
 The XCAST Routing Engine and the network core router should be able
 to support SNMP and/or NETCONF protocols[2]. - The XCAST Engine
 should be running on a hardware platform that supports IEEE802.1Q
 (VLAN tagging).

 Once the above requirements have been met, then the following
 considerations must be investigated: - How to filter XCAST6 packets

Abade, Kawaguchi et al. Expires April 19, 2010 [Page 6]

Internet Draft draft-abade-xcast20-engine-spec-00.txt October 2009

 at the core network router to ensure that only XCAST6 packets are
 sent to the XCAST6 routing engine for processing in accordance with
 the XCAST algorithm. - How to synchronize the routing tables of the
 XCAST6 routing Engine and that of the network core router so as to
 ensure that when XCAST6 packets are processed, the most uptodate
 network structure is used. - How to forward the processed XCAST6
 datagrams to their next hop routers or destinations in a manner that
 would be the same as if the processing was done at the core network
 router. - Performance considerations of the XCAST Engine must also
 be investigated because the objective of the XCAST Engine is to
 determine the feasibility of deployment of XCAST6 protocol in
 commercial routers.

4.1. Filtering of XCAST6 Packets

 To identify XCAST6 packets, policy based bit matching should be done
 on inbound packets at each of the core router’s interfaces except the
 one to which the XCAST Engine is connected. The matching is done
 against the traffic class of IPv6 packets and those with 010111XX
 class are identified as XCAST6 packets. Policy routing and filter
 based forwarding is therefore a required feature in the commercial
 routers to which the XCAST Engine are connected.

4.2. Synchronizing the routing tables

 The routing table of the XCAST Engine must mirror as closely as
 possible that of the network core router. This is to ensure that
 XCAST6 packets processed appear as if they were actually processed at
 the core router. To realize this, mechanism must be in place that
 ensure that changes in the routing table of the network router are
 immediately effected in the XCAST6 routing Engine.

 SNMP scripts can be defined that retrieve the IPv6 routing table MIB
 of the core router and passes it to a program that updates the
 routing table of the XCAST6 Routing Engine. It should be noted that
 some SNMP MIBs, including the routing table MIB are processor
 intensive hence an alternative implementation of this synchronization
 is currently under investigation. The alternative approach seeks to
 investigating the use of NETCONF[2] in realizing the same objective
 since it is hypothesized that when the routing table of the core
 router is too large, using NETCONF instead of SNMP would help reduce
 the router’s CPU load considerably.

 In the current implementation, both SNMP and NETCONF have been tested
 using a polling approach whereby the corresponding scripts regularly
 poll the core router over a specified unit of time. Other approaches
 are being considered preferably where the synchronization process
 will be initiated by the core router only when its routing table has

Abade, Kawaguchi et al. Expires April 19, 2010 [Page 7]

Internet Draft draft-abade-xcast20-engine-spec-00.txt October 2009

 changed.

4.3. Forwarding of the processed XCAST6 datagram

 To realize effective forwarding of the XCAST6 packets, a set of
 virtual interfaces are cloned between the XCAST Engine and the core
 router. Typically, this should reflect the number of interfaces on
 the core router. Each of the cloned interfaces is assigned a
 different subnetwork and when synchronizing the routing tables as
 described in 4.2 above, each of these interfaces will handle their
 packets in a similar manner to their corresponding interfaces on the
 core network router.

 +----------------------+
 | NETWORK | VLAN tagged +---------------------+
 | ROUTER + Interfaces | XCAST6 ENGINE |
 | +--|-------------+--+ +
 | +-+-+-+-+-+-+-+-+ |--+-------------|--| +-+-+-+-+-+-+-+ |
 | |Routing Table |<+--|-------------+--+->|Routing Table| +
 | +-+-+-+-+-+-+-+-+ |--+-------------|--| +-+-+-+-+-+-+-+ |
 | +--|<------------+--+ +
 +----------------------+ | |
 +---------------------+
 Figure 3

 This way, XCAST6 packets shall be forwarded to their next-hop routers
 or destinations as if they were processed from the core network
 router.

4.4. Performance characteristics

 The real objective of implementing an XCAST6 Routing Engine is to
 pave way for real world deployment of XCAST protocol in commercial
 routers. To achieve this, we should be able to understand the
 performance characteristics of XCAST protocol so as to seek for the
 feasibility of its deployment in commercial routers. The XCAST6
 Routing Engine performance measurement seeks to benchmark the XCAST
 protocol with respect to the following performance metrics:
 -Throughput -Latency and latency distribution -Packet loss rate -CPU
 utilization -Memory utilization -Context switch and system call
 overheads -Average system load

5. XCAST Engine APIs

 Implementing the XCAST6 Routing Engine should be fast and as simple
 as possible. To realize this, there is a need of creating a set of
 Application Programming Interfaces (APIs) that can be easily invoked.

Abade, Kawaguchi et al. Expires April 19, 2010 [Page 8]

Internet Draft draft-abade-xcast20-engine-spec-00.txt October 2009

 While the current work is yet to finalize this, it is an area we are
 currently working on. Once completed, we shall seek to explore the
 full potential of an XCAST6 routing Engine.

6. IANA Consideration

 XCAST6 version 2.0 uses the following IANA resources from
 experimental range. IANA should consider assigning the following
 resources to avoid the conflict with any other experiments similar to
 XCAST6 version 2.0, should such an experiment appear.

 (1) DSCP (2) Multicast Address for ALL_XCAST_NODES (3) Routing Type
 of IPv6 Routing Header (4) Option Type of IPv6 Destination Option
 Header

7. Security Consideration

 To counter measure the problem of unlimited repeat delivery (RH0
 problem), XCAST6 version 2.0 specification defines the usage and
 handling of "hoplimit". When an XCAST6 packet reaches a node (or a
 router), whether the node is XCAST6 aware or not, it reduced the
 hoplimit value of the outer IPv6 header by 1. Additionally, the un-
 delivered mark ’1’ of the bitmap field always decreases when a packet
 is copied. It therefore means that, the edge of delivery tree of a
 single XCAST packet is 255(hoplimit) * 126(number of bitmap). The
 maximum stretch of the delivery tree is less than 256.

8. Informative References:

[1] IPv6 Extension Headers Review and Considerations, Cisco Systems,
 2006

[2] R. Enns, Ed, NETCONF Configuration Protocol, RFC4741, Juniper
 Networks Inc, December 2006.

[3] JUNOS NETCONF API, Release 9.3, Juniper Networks Inc, 2008

[4] C. Partridge and A. Jackson, IPv6 Router Alert Option, RFC2711,
 October 1999

[5] R. Boivie, et al., "Explicit Multicast (Xcast) Concepts and
 Options", RFC 5058, November 2007

Abade, Kawaguchi et al. Expires April 19, 2010 [Page 9]

Internet Draft draft-abade-xcast20-engine-spec-00.txt October 2009

[6] S. Deering, "Multicast Routing in a datagram internetwork", PhD
 thesis, December 1991.

[7] XCAST6 (version 2.0) Protocol Specification, Internet Draft,
 draft-ug-xcast20-protocol-spec-00.txt, Feb 2008, Work in
 Progress.

[8] M. McKusick, George Neville-Neil: The Design and Implementation
 of the FreeBSD Operating System, Addison-Wesley, July 2004

[9] JUNOS Feature guide, Release 9.1, Juniper Networks Inc.

[10] Y. Imai et al, BSD implementations of XCAST6, in proceedings of
 ASiaBSDCon2008 (Mar. 2008).

[11] Dominique C, Rex Young, "Build a network router on Linux", 2003

[12] Andre Ben Hamou, Practical Ruby for Systems Administration,
 Apress, June 2007.

[13] S. Deering, R. Hinden, "Internet Protocol, Version 6 (IPv6)
 Specification", RFC 2460, December 1998

[14] B. Fenner, "Experimental Values in IPv4, IPv6, ICMPv4, ICMPv6,
 UDP, and TCP Headers", RFC 4727, November 2006.

[15] K. Nichols et al, "Definition of the Differentiated Services
 Field (DS Field) in the IPv4 and IPv6 Headers", RFC 2474, Decem-
 ber 1998

[16] K. Ramakrishnan et al, "The Addition of Explicit Congestion
 Notification (ECN) to IP", RFC 3168, September 2001

[17] The case against Hop-by-Hop options, Internet Draft, draft-
 krishnan-ipv6-hopbyhop-02.txt, February 2008, Work in Progress.

Abade, Kawaguchi et al. Expires April 19, 2010 [Page 10]

Internet Draft draft-abade-xcast20-engine-spec-00.txt October 2009

[18] S. Bradner, Harvard University, Key words for use in RFCs to
 Indicate Requirement Levels, March 1997.

9. Authors’ Addresses

 Odira Elisha Abade, Graduate School of Engineering, Nagoya Uni-
 versity, Furo-cho, Chikusa-ku, Nagoya, 464-8603, JAPAN Email:
 abade@ucl.nuee.nagoya-u.ac.jp

 Nobuo Kawaguchi, Graduate School of Engineering, Nagoya Univer-
 sity, Furo-cho, Chikusa-ku, Nagoya, 464-8603, JAPAN Email:
 kawaguti@nagoya.jp

10. Contributor Addresses

 Eiichi Muramoto Matsushita Electric Industrial Co., Ltd. 4-12-4
 Higashi-shinagawa, Shinagawa-ku, Tokyo 140-8587, Japan Phone :
 +81-3-6710-2031 E-mail: muramoto@xcast.jp

 Yuji Imai Fujitsu LABORATORIES Ltd. 1-1, Kamikodanaka 4-Chome,
 Nakahara-ku, Kawasaki 211-8588, Japan Phone : +81-44-754-2628
 Fax : +81-44-754-2793 E-mail: ug@xcast.jp

 Takahiro Kurosawa E-mail: takahiro.kurosawa@gmail.com

Abade, Kawaguchi et al. Expires April 19, 2010 [Page 11]

