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Abstract. We propose a smart sound sensor for building context-aware
systems that instantly learn and detect events from various kinds of ev-
eryday sounds and environmental noise by using small and low-cost de-
vice. The proposed system automatically analyzes and selects an appro-
priate sound recognition process, using sample sounds and a parameter
templates database in the event learning phase. A user is only required
to input target event sounds from a microphone or sound files. Using the
proposed sensor, the developer of ubiquitous service can easily utilize real
world sounds as event triggers to control appliances or human’s activity
monitors for presence services without a signal processing programming.

1 Introduction

Context-aware systems are beginning to play an important role in supporting
human activities. Various input devices such as accelerometers, pressure and
temperature sensors, and GPS are used to input context information into sys-
tems. For example, small network devices with these sensors have been developed
(MOTEJ1] Smart-Its[3]) and used to build a smart room. A health care system
that senses a user’s actions such as washing hands and taking a shower has been
proposed by Jianfeng Chen[6]. Paul Lukowicz[10] proposed an activity sensing
system for workshops that uses a microphone and accelerometers worn on the
body. There has also been some research on systems that use signal process-
ing with time series data from sensors like microphones and accelerometers that
shows this kind of processing is useful in obtaining rich context information[7][8].
However, designing the recognition algorithm for a complex signal pattern is not
easy because analyzing feature quantity requires a lot of time, and in the ubig-
uitous environment, it is assumed that there are many sensing targets.

We propose an instant learning sensor that can learn signal patterns instantly
using a small inexpensive device. The proposed sensor can record and learn the
time series signal pattern that a user wants to detect as an event. The instant
learning sensor has the following three features.

(1) Instant Learning: On the sensor installation site, the sensor can in-
stantly learn a signal pattern by user’s demonstration of a target event. The
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system automatically analyzes the recorded signal and chooses the most ap-
propriate algorithm to extract feature quantity. This enables the user to build
context-aware systems without signal processing programming.

(2) Smart Sensor: The sensor can process the signal by itself. It can also
cooperate easily with other devices or context-aware systems.

(3) Simple Device: The sensor can be implemented on low-cost devices
such as microcontrollers. So, we aim as much as possible at light processing. To
make the device simple, we think a sensor only has to be able to recognize a few
events and specialize in specific events that reduce the size of the memory and
processing power.

We believe our instant learning sensor can simplify building of an advanced
ubiquitous service that function as event notifiers. For example, in systems like
eBlocks [12], that can easily construct smart environments simply by connecting
block devices, instant learning sensors can be used as event triggers for control of
appliances. They can be also used for more detailed sensing of peoples’ activities
when they are embedded into mobile phones or smart rooms and buildings.

We focus on instant learning and describe the prototype of the instant learn-
ing sensor, which can recognize environmental sounds and sounds made by hu-
mans and machines. Sound has very rich context information. We designed and
implemented an instant learning sound sensor, which we embedded in a PC,
and an inexpensive DSP microcontroller using a cheap piezoelectric device as a
microphone.

2 Contributions

Obtaining information from the real world is one of the most important issues
in ubiquitous computing. Current research on connecting the real and digitized
worlds focuses mostly on specialized devices or algorithms for each type of real
world event. However, there are an enormous number of types of real world
events that must be recognized by these specialized devices or algorithms. It is
almost impossible to cover all of these events by studying them one by one.

We propose an instant learning sound sensor built on an inexpensive device.
Sound is one of the most rich context media. We believe that most real-world
activities such as walking, opening and closing doors, using a vacuum cleaner,
watching TV, pouring tea, and bathroom activities can be recognized merely
by using the smart sound sensor. Of course, some of these events are easily
recognized by sensing devices such as mechanical switches or motion detectors.
However, we think it is costly and bothersome to develop a device or method
for each event. Our smart sound sensor is a single inexpensive device, is very
flexible, and has a wide range of applications, such as do-it-yourself smart spaces
and rapid prototyping of context-aware systems.

The main contributions of this paper are summarized as follows.

(1) Proposing a simple sensor, which can only recognize a few sounds. This
enables sound recognition in a low-cost device with less processing power and
memory. If user wants to recognize several events, just use several sensors.
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(2) Consideration of on-site configuration of sensing algorithms and param-
eters. This enables a single device to be flexibly utilized.

3 Signal Processing

3.1 Light-weight Sound Recognition Process

In this section, as an example of a light process for everyday sound recognition
process, we describe signal processing using DP matching.
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Fig. 1. Spectrograms and waveforms of environmental sound
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Fig. 2. Basic sound recognition process

A lot of speech recognition system use speech spectra such as mel-cepstrum
or liner prediction coefficients (LPC) to extract feature quantities. We use a case
study to discuss the signal processing for everyday sound recognition.

Figure 1 shows examples of waveforms and spectrograms of target sounds.
First, we considered appropriate feature quantities for recognition of a sound. As
can be seen in these figures, there are individual characteristics in each sound.
Sound (a) in Figure 1 has a characteristic constant frequency over time. Sound
(b) has a characteristic change of amplitude over time. Therefore, we think
feature quantity should include not only frequency but amplitude characteristics.
It is also be necessary to adjust weights between feature quantities for each target
sound.

We designed a basic sound recognition process that calculates the similar-
ity between an input sound and a target event sound using DP matching (dy-
namic programming matching[5], dynamic time warping[2]) about a change in
frequency and amplitude characteristics. The process has some flexibility param-
eters. It can adjust weights between feature quantities and has options such as
whether to enable a low pass filter. Figure 2 shows the overview of a recognition
process, and Table 1 shows a list of parameters.

(1) First, it divides inputted waveform into frames. The length of each frame
is Flengtn points, and the shift length is Fip;r¢ points.

(2) Second, in each frame, it extracts feature quantity vectors, calculates
power spectra using fast Fourier transform (FFT), divides it equally to N, sec-
tions, calculates the average of each section, and normalizes by maximum power.
The range of each element is 0.0 ~ 1.0. In addition to these N, elements, it adds
an amount of the change of power by the following expression as the (N, 4+ 1)th
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Table 1. Parameter List

parameter description

Fiengtn frame length

Finigt frame shift length

Ny dimension of frequency characteristics in feature quantity vector
Wy weight of frequency characteristics in distance function

Wp weight of power change characteristics in distance function

W, weight of amplitude characteristics in distance function

L variable L in expression (1)

Anmaz upper amplitude for normalization

Enable LPF flag to enable a low pass filter

CodebookSize_S |code book size of a stationary sound

CodebookSize_T|code book size of a target event sound

Threshold threshold for acceptance criterion by similarity of DP matching

element, and the maximum amplitude value in each frame as the (NN, + 2)th ele-
ment. L is a constant number. The range of the (IV, + 1)th element is 0.0 ~ 1.0,
and the range of the (N, + 1)th element is 0.0 ~ 1.0 using upper value A, 4..
Each feature quantity vector has a total of N, + 2 elements.

P - P -1
Vee(Ny +1) = OWeT maz (1) Lowermax(n ) (1)

(3) Third, it changes the vectors to code array using vector quantization[11]
with a code book of target sound and a following distance function. In the
expression, W; is a weight for frequency characteristic, W), is a weight for the
amount of change in power, and W, is an amplitude characteristic.

diS(Uhvg) = Wf X distf(vl,vg) + Wp X distp(vl,vg) + Wa X disa(vl, UQ)(Q)

Nv
disg(vi,v2) =Y (v1(k) — va(k))? (3)
k=1
disp(v1,v2) = (01(Not1) = v2(Not1))” (4)
disq(v1,v2) = (v1(Nyya) — va(Nyya))? (5)

(4) Finally, using DP matching, it calculates the similarity between the in-
putted code pattern and one of the target event sounds. Then, it compares the
similarity with the threshold for detection judgment.

These are processed in real time every Fip; ¢ points. The code book and code
pattern of the target event sound are made in advance.

3.2 Parameter Configuration

Table 2 shows examples of manual configuration for the sounds in Figure 1. As is
the case in Table 2, we think the configurations of the parameters should contain
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Table 2. Example of parameter configurations

parameter name [sound (a)[sound (b)[sound (c)

Fiength 256 128 512
Fopife 60 30 120
N, 16 12 32
W, 1.0 0.4 0.5
Wp 0 0 0.5
W, 0 0.6 0

L - - 120.0
Amaz - 30000 -
Enable LPF false false false
CodebookSize_S |2 4 4
CodebookSize_T|4 16 16

fewer vector dimensions and less codebook size for light processing and require
less memory.

Our aim is to automatically generate a recognition program for unknown
everyday events. This requires a search for specific and appropriate parameter
configuration for each target event sounds. Therefore, we designed a method of
flexibly configuring the feature quantities to select a proper set for the target
sound. In the next section, we describe this flexible configuration method.

4 Design of Instant Learning Sound Sensor

4.1 System Architecture

We designed an instant learning sound sensor to have two modes (Figure 3).

(1) Event Learning Mode: In this mode, the system analyzes a target event
sound that is inputted by a user, and automatically selects a specific parameter
configuration. Then, it makes a codebook and code pattern dictionary for the
target sound.

(2) Event Detection Mode: In this mode, the system monitors a target event
sound and notifies other systems via a network if the event is detected.

The proposed system consists of the following two components.

(1) Sensor Configurator: This software supports the event-learning mode and
has a function to install the selected recognition process and configuration in
sensor devices.

(2) Sound Sensor Device: This is a device that runs the sound recognition
process in event detection mode.

To simplify the sensor device, we implemented the sensor configurator in a
powerful computer such as a PC.

As a microphone, we chose a piezoelectric device. This device is very cheap
small and thin, so it can also be attached to almost any kind of object, for
example a wall, a desk, a cup, a faucet, a book, a telephone, or a trash can.
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Fig. 3. System Overview

Generally, it is said that sound sensing using a microphone is easily disrupted by
environmental noise and human speech. However, because a piezoelectric device
is a contact sensor, we don’t use noise-reduction process in current system.

4.2 Sample Sounds and Parameter Templates Database

In section3.2, we mentioned the need for specific parameter configurations for
each event sound. The most naive configuration method is to try all combi-
nations of parameters, but this takes a very long time. Therefore, we collected
various environmental and everyday sounds as samples and built a sample sounds
database that uses sample sounds and corresponding parameter configurations
as templates. The template is an appropriate set of parameters for the light
recognition process and is made in advance by such as a full search. In the event
learning mode, the sensor configurator utilizes the templates of similar sample
sounds with a target event for parameter configurations.

4.3 Instant Learning

The sensor configurator processes the event-learning mode using the sample
sounds and parameter templates database. Figure 4 shows the process.

(1) The user inputs a target event sound, then the sensor configurator calculates
similarities between sample sound in terms of frequency (simy) and amplitude
(sim,) characteristics using the following expressions.

Sim(ssamplea Starget) = Simf(ssamplea Starget) X Sima (Ssampl67 Starget) (6)

simy is the similarity between two N dimension frequency characteristic
vectors of amount of change in power on each band in the whole. It uses the
vector space model[4].

Yoy u(n)w(n)

N u(n)2 SN w(n)?

Simf(ssamplea Stm“get) =
Ve
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sim, is a similarity between two time series changes of amplitude, using DP
matching cost(dtwCost).
1

s1mg (s s = 8
a( samples target) dthOSt(Ssample73target) + 1 ( )

Both similarities are normalized, so the range of sim(ssample, stmget) is0.0 ~
1.0. The bigger value means more similar.
(2) Second, the sensor configurator sorts all sample sounds according to their
similarities, and selects some templates corresponding to superior sample sounds.
Then, based on parameter configurations of selected templates, it makes code
books using the LBG algorithm[13] and code pattern dictionaries of target
sounds. In the prototype, the sensor configurator tries four templates.
(3) Third, the sensor configurator determines the threshold of cost in DP match-
ing in each parameter configuration. Using target event sounds and non-target
sounds, it gets the DP matching set of costs for both target and non-target
sounds. The threshold is determined by the following two expressions. P(S|n)
is the rate of true detection when non-target sounds are inputted, and P(N|s)
is the rate of false detection when target sounds are inputted. The relation be-
tween the two expressions and the threshold is shown in Figure 4-(3). As can be
seen in Figure 4-(3), the best threshold is estimated at around the point where
P(S|n) = P(N|s). For non-target sounds, it uses other sample sounds in the
database.
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(Number of accepted non target sounds)

P(S|n) = (9)

(Total of non target sounds)

(Number of rejected target sounds)

P(N|s) =
(Nls) (Total of target sounds)

(10)

(4) Finally, the sensor configurator evaluates rates of accepted non-target sounds
in each parameter configuration, comparing the result of the previous step. After
the evaluation, it chooses the lowest error configuration and installs them in
sound sensor devices.

To execute the above process, the user is only required to prepare some
recorded target event sounds. The sensor configurator automatically selects an
appropriate recognition process.

5 Prototype Implementation on a PC

5.1 Sensor Configurator and Sound Sensor on a PC

Based on the above design, we implemented the first prototypes of the sensor
configurator and sound sensor on a Windows PC using C language.

Sensor Configurator Figure 5 is a screenshot of the sensor configurator. The
user simply (1) prepare recorded target event sounds as WAVE files, (2) drag
& drop them to the sensor configurator, and (3) push the learning button with
automatic template selections and evaluations. In this prototyping, the sampling
frequency is 12-16 kHz, and there are 16 sampling bits.
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Fig. 5. Screenshot of Sensor Configurator
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Fig. 6. Screenshot of Sound Sensor on PC
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Fig. 7. Example of useage of Sound Recognition Toolkit

For the sample sounds and parameter templates database, we collected 30
events, each with about 50 sounds, for a total of about 1500 sounds. In this
implementation, we adjusted parameter templates of sample sounds as light as
possible by our hands. As a way of recording sounds, we attached a piezoelectric
device to objects like Figure 1 and 6, then we repeated actions and captured
event sounds. Table 3 lists examples of recorded sample sounds.

Sound Sensor Figure 6 is a screenshot of the sound sensor and a photo of an
attached piezoelectric device on a coffee cup. On target event detection, it can
send notification UDP packets to other systems through an IP network.
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5.2 Sound Recognition Toolkit

We also developed a communication API library with the sound sensors on PCs
via the Windows DLL IP network. A user’s program can receive callback when
event sounds are detected. This library can be used as shown in Figure 7.

6 Evaluation of Instant Learning

We evaluated the recognition rate of the proposed instant learning methods,
using the prototype system on a PC.

6.1 Recognition rate of optimized parameters in templates

Before evaluating the instant learning with several event sounds, we evaluated
the sound recognition processes with optimized templates as discussed below.

(1) Recognition rate: We inputted about 50 correct event sounds and counted
a number of accepted correct sounds.

accepted

Recognition rate = (11)

correct
(2) Error rate: We inputted 120 incorrect sounds (24 types of event five times
each), and counted a number of accepted incorrect sounds.

accepted

Error rate = (12)

incorrect

The results are listed in Table 3. For some sounds, like the sound of writing
on a clipboard, the error rate was high. We think these sounds need other recog-
nition algorithms or feature quantities. However, using an optimized parameter,
the system can recognize the corresponding correct sounds, with 80 to 100%
accuracy.

6.2 Recognition rate of unknown event sounds

Next, we evaluated the accuracy of the recognition process automatically gener-
ated by instant learning system.

(1) Removing four types of sample sounds and templates from the sample
sounds database, we inputted those types of event sounds to the sensor config-
urator and got each recognition process.

(2) Using automatically generated recognition processes, we inputted about
50 correct sounds and 120 incorrect sounds and measured recognition and error
rates, as in the previous evaluation.

The results are listed in Table 4. As with the optimized templates, the recog-
nition rates are over 83%, meaning the system can recognize correct events
sounds well.

These results show that our proposed method is useful for choosing auto-
matically specific and appropriate parameters for environmental and everyday
sounds.
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Table 3. Results of evaluation with optimized templates

Event [Recognition rate[Error Rate
1. Turning on a faucet 100.0% 0.0%
2. Closing a sliding door 100.0% 1.7%
3. Closing door of refrigerator 100.0% 2.5%
4. Opening a window shade 100.0% 15.8%
5. Rotating a knob and opening a door|88.9% 0.0%
6. Pouring out tea 86.8 % 5.0%
7. Putting a phone down 86.4% 5.8%
8. Writing on a clipboard 85.6% 65.8%
9. Opening a drawer 83.3% 0.0%
10. Inserting a plug in an outlet 83.3% 0.0%

Table 4. Results for instant learning

Event [Recognition rate[Error Rate
1. Typing on a keyboard  [100.0% 35.0%

2. Opening a window shade|96.9% 0.0%

3. Writing on a clipboard [85.6% 35.8%

4. Opening a drawer 83.3% 1.7%

7 Sound Sensor on Small and Low Cost Device

In the next step, we implemented the second prototype sound sensor device on
a Microchip dsPIC[9] to evaluate its feasibility on a small inexpensive device.

In this prototype on the DSP microcontroller, we use a Microchip dsPIC30F60
14A with 8 KB Data RAM and a Silicon Laboratories Si3000 codec chip with
12 KHz sampling frequency and 16 sampling bits. We also used a SENA Parani
ESD200 Bluetooth communication module for event notification. Figure 8 is a
photo of the prototype sensor board. To program target event sound recognition
processes to microcontrollers, a user can use codebooks, code pattern dictionar-
ies, and parameter configurations header files for dsPIC C compliers converted
by the sensor configurator.

For real-time recognition, the system needs to complete per-frame works
within FrameShiftLength/SamplingFrequency (= 5 msec). For example, a
specific configuration of the sound recognition process of (a) turning on a faucet,
shown in Figure 1, is (a) in Table 2. In this example configuration, we confirmed
that per-frame work can be done in an average of 3.49msec, with 58.94MHz
(14.74MIPS) system clock and 60 code pattern length. The required RAM size
can also come to less than 4KB of memory use. The total code size including
codebook, and pattern dictionary, is about 10 KB. We also confirmed real-time
recognition for the sound of opening a drawer using this device.

This implementation demonstrates the feasibility of the small inexpensive
instant learning sound sensor.
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8 Conclusion

In this paper, we describe the design and implementation of an instant learning
sound sensor that makes it easy to build a context-aware system using sound
recognition. The proposed learning sensor can instantly learn and detect tar-
get event sounds such as everyday sounds and environmental noise. The sensor
configurator automatically analyzes target event sounds and chooses the most
appropriate feature quantities and parameter configuration for high recognition
rate and light processing using sample sounds and parameter templates DB.
Therefore, using the instant learning sensor, a user can build context-aware sys-
tems that utilize real world sound as rich context information, without signal
processing programming. Users can also easily integrate the sound recognition
function with their systems as event notifiers. We have confirmed that the recog-
nition process in this prototype system can run on a small and low cost device.

In future work, we are currently working on design and implementation of
small networked instant learning sound sensor devices, and considering a sensor
fusion method to treat complicated sounds. We will support more kinds of feature
quantities and algorithms for various sounds recognition, and collect more sample
sounds and templates. Furthermore, we will extend an instant learning method
to the other sensors such as accelerometer.
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