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Abstract

Recently, many low-profile devices with RF communica-
tion features have been developed such as sensor network
nodes and one-chip microcomputers. This caused a vari-
ety of gadgets join to the wireless network. However, in
order to realize collaborations between these devices, gen-
erally we have to develop complicated distributed software.
In this paper, we propose an automatic software decentral-
ization method, which converts a stand-alone software pro-
gram into distributed software programs. In order to ex-
ecute the generated software on these low-profile devices,
we employ the programming language nesC for a decen-
tralization target. We also have implemented applications
with real hardware devices to exemplify that the proposed
method successfully improves the ease of development.

1 Introduction

Recently, many low-profile devices with RF communi-

cation features have been developed such as sensor net-

work nodes and one-chip microcomputers. This caused a

variety of gadgets such as sensors, audio-visual appliances,

PC peripherals, and even a pen[1] join to the wireless net-

work. Figure 1 shows example low-profile devices, which

MOTE nRF24E1

Figure 1. Low-profile Devices

are Berkeley MOTE[6] and Nordic nRF24E1[14] devices.

We wish these devices collaborated with each other via

the network, provided more advanced application services

which assist our daily life. However, in order to realize

the device collaborations, generally we have to develop the

complicated distributed software programs.

In this paper, we propose an automatic software de-

centralization method, which converts stand-alone software

into distributed software. Some software decentralization

methods are already proposed, such as J-Orchestra[16] and

Addistant[15]. However, these methods are targeting the

JavaVM with a RPC (Remote Procedure Call) service,

which is too large for the low-profile devices. In order to

execute the generated software on these low-profile devices,

we employ the programming language nesC[4] for a decen-

tralization target. While conventional RPC communicates

at each function call, our proposed method only communi-

cates when an execution node of a control-flow is changed.

This often reduces the number of communications. We also

have implemented applications with real hardware devices

to exemplify the usefulness of the proposed method.

2 Device Collaboration Frameworks

We categorized device collaboration frameworks into the

two types, which are centrally controlled collaboration and

distributed collaboration shown in Figure 2.

In the centrally controlled collaboration, device-specific

functions in the devices are centrally controlled by the re-

mote control node. This remote control is realized by a

RPC (Remote Procedure Call) framework, such as Univer-

sal Plug and Play[10] and Jini[18]. Thus the application

software which implements the device collaboration is sin-

gle stand-alone software, which can be easily developed.

On the other hand, in the distributed collaboration frame-

work such as Touch-and-Connect[7] and AMIDEN[11],

each device has application-specific functions (application
protocol). Devices directly communicate with each other

to realize the device collaboration. Compared with the
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Figure 2. Device Collaboration Frameworks

centrally controlled collaboration, the distributed collabora-

tion can employ more effective application protocol because

each device has application-specific functions, and does not

need the remote control node. However, generally it is hard

to develop distributed software which implements effective

application protocol.

Our software decentralization method aims to automat-

ically generate this distributed application software from

stand-alone application software in the centrally controlled

collaboration. This means we can receive advantages of

both device collaboration types.

Bischoff et al. proposed a similar approach[2], which au-

tomatically generates distributed device applications from

the high-level application definition. They develop par-

ticular rule-based language for the application definition.

Our approach uses the same procedure-oriented language

as conventional manner to write an application program,

which might be widely acceptable to application program-

mers.

3 Automatic Software Decentralization Algo-
rithm

In this section, we describe detailed steps of our auto-

matic software decentralization algorithm, which convert a

stand-alone software program into distributed software pro-

grams.

Figure 3 shows an example which applies this algorithm

to a simple program. The index numbers of the algorithm’s

steps shown below correspond to the index numbers in the

figure.

Here, a node means the terminal where the generated dis-

tributed software will be executed.

(1) Input a Source Program: First, a source program is

inputted, which is written as stand-alone software. The uses

of node specific features are described as function calls. Ad-

ditionally, a function placement is inputted, which indicates

correspondence between a function and its execution node.

An example source program is shown in Figure 3 (1),

which represents device collaboration between a Sensor-

node (which can sense temperature and battery voltage) and

a LCD-node (a display device which can show characters).

The program read sensor measurements (temperature

and battery voltage), put them on the LCD, and show “LOW

BATTERY” message when the battery voltage is less than

the specific threshold (4800). The functions placement is

that the functions that start with “Sensor.” should be ex-

ecuted on the Sensor-node, and the functions that start with

“Lcd.” should be executed on the LCD-node.

The algorithm splits this program into two distributed

software, where one can be executed on the Sensor-node

and the other on the LCD-node.

(2) Create Control-flow Graph: The algorithm creates a

control-flow graph[12] from the inputted source program.

The control-flow graph includes blocks which are the se-

quence of several statements, and control flows (represents

as arrows in the figure) between these blocks.

In this step, the statement which contains several func-

tion calls is split into several statements by using temporary

variables, because the algorithm places each statement on a

single node. For example, the statement:

Lcd.writeInt(Sensor.getTemperature());

is converted to the two statements by using the temporary

variable temp1 as follows:

temp1=Sensor.getTemperature();
Lcd.writeInt(temp1);



(1) Source Program

Lcd.writeInt(Sensor.getTemperature());
voltage = Sensor.getBatteryVoltage();
if (voltage<4800) {

Lcd.writeStr("** LOW BATTERY: ");
Lcd.writeInt(voltage);

}
Lcd.flush();

Target program: Showing sensor measurements on LCD

Split into Sensor-node 
and LCD-node

Functions Placement
• Sensor.* Sensor-node
• Lcd.* LCD-node

(2) Create Control-flow Graph

temp1 = Sensor.getTemperature();
Lcd.writeInt(temp1);
voltage = Sensor.getBatteryVoltage();

if (voltage<4800)

Lcd.writeStr("** LOW BATTERY: ");
Lcd.writeInt(voltage);

Lcd.flush(); 

truefalse

Split program into blocks at control 
branch and join points
Several functions in a statement

split into several statements

(3) Select Execution Node of Each Statement

S-node: temp1 = Sensor.getTemperature();
L-node: Lcd.writeInt(temp1);
S-node: voltage = Sensor.getBatteryVoltage();

if (voltage<4800) 

L-node: Lcd.writeStr("** LOW BATTERY: ");
L-node: Lcd.writeInt(voltage);

L-node: Lcd.flush(); 

truefalse

run on the same node (S-node)
as the last statement

Functions Placement
• Sensor.* Sensor-node
• Lcd.* LCD-node

(4) Split Blocks into Execution Node

temp1 = Sensor.getTemperature();

Lcd.writeStr("** LOW BATTERY: ");
Lcd.writeInt(voltage);

Lcd.flush(); 

false

Lcd.writeInt(temp1);

voltage = Sensor.getBatteryVoltage();
if (voltage<4800)

true

S-node:

S-node:

L-node:

L-node:

L-node:

(5) Data-flow Analysis
for Determining Live Variables

temp1 = Sensor.getTemperature();

Lcd.writeStr("** LOW BATTERY: ");
Lcd.writeInt(voltage);

Lcd.flush(); 

false

Lcd.writeInt(temp1);

voltage = Sensor.getBatteryVoltage();
if (voltage<4800)

Variable “temp1”

Variable “voltage”true

S-node:

S-node:

L-node:

L-node:

L-node:

(6) Generate Message Communications

Realize remote jump as 
message passing

temp1 = 
Sensor.getTemperature();
Send_MSG1(temp1);

onRevceive_MSG3(voltage) {
Lcd.writeStr("**LOW BATTERY:");

Lcd.writeInt(voltage);
onReceive_MSG4();
}

onReceive_MSG4() {
Lcd.flush(); 
}

onReceive_MSG1(temp1) {
Lcd.writeInt(temp1);
Send_MSG2();
}

onReceive_MSG2() {
voltage = Sensor.
getBatteryVoltage();

if (voltage<4800) {
Send_MSG3(voltage);

}else{
Send_MSG4();

}
}

:edon-DCL:edon-rosneS

MSG1(temp1)

MSG2

MSG3(voltage)

MSG4

Figure 3. Applying Example of The Software Decentralization Algorithm



(3) Select Execution Node of Each Statement: The al-

gorithm selects a execution node of each statement (place-

ment of statements). The statement that contains a call for a

node-specific function will be executed on the node where

the function exists. This is determined according to the

inputted functions placement. The placement of the other

statements is a challenging problem. In the current imple-

mentation, they will be executed on the same node as the

last statement.

Figure 3 (3) shows the example placement, where the

S-node means the Sensor-node, and the L-node means the

LCD-node.

(4) Split Blocks into Execution Node: The algorithm

splits a block (sequence of statements) at the point where

the execution node of a statement is changed. As a result,

each block contains only statements executed on a single

node, which means the execution node of the block is deter-

mined (placement of blocks).

(5) Data-flow Analysis for Determining Live Variables:
The algorithm analyzes the data that should be passed be-

tween the blocks by data-flow analysis. Here, we use the

live variables[12] as the data that should be passed. The

live variables mean that whose value at the block’s entrance

will be used later.

(6) Generate Message Communications: The algorithm

implements a remote jump (control-flow to a remote node)

as a message passing. The message type is created corre-

sponding to the block. The live variables of the block are

passed as the message’s arguments, in order to synchronize

the value of these variables.

The software decentralization is completed by the steps

mentioned above. In the example at the Figure 3 (6), the

number of times of message passing is three, which are

MSG 1, MSG 2, and MSG 3 or MSG 4. This result shows

that the proposed algorithm reduced the number of times

of message passing compared with the RPC, because two

messages (a request and a reply) will be passed for each

function call in the RPC.

4 Implementation for nesC Language

We have implemented a prototype system of our pro-

posed method to exemplify its feasibility. We employ the

nesC[4] as a source and target program language for the de-

centralization, because we think generated software should

be executed on low-profile devices. The nesC is the ex-

tended C language, which targets low-profile devices such

as MOTE[6], and employs the component model aiming at

module MainTask {

uses interface MySensor;

uses interface CharacterLcd;

provides interface StdControl as TimerManage;

uses interface Timer;

}

implementation {

// main task to be separated

task void mainTask() {

uint16_t temperature;

uint16_t batteryVoltage;

temperature = call MySensor.getTemperature();

call CharacterLcd.clear();

call CharacterLcd.writeString("Temperature:");

call CharacterLcd.writeInteger(temperature);

batteryVoltage = call

MySensor.getBatteryVoltage();

if (batteryVoltage<4800) {

call CharacterLcd.writeString(

" ** LOW BATTERY: ");

call CharacterLcd.writeInteger(

batteryVoltage);

}

call CharacterLcd.flush();

}

// other modules

event result_t Timer.fired() { ... }

:

}

variables

source program

to decentralize

node-specific

functions of

several nodes

as interfaces

Figure 4. Source Program (digest)

a static optimization. Note that our decentralization algo-

rithm itself will not be executed on the low-profile devices,

thus we have implemented the algorithm on Java 2 SE 5.0,

with the nesC parser TinyDT[8].

First, we targeted the TinyOS[4] platform, which is the

standard API libraries for the nesC. An example source pro-

gram is shown in Figure 4, which is the same behavior as

the example in Section 3 and is decentralized into Sensor-

node and LCD-node. The generated programs are shown in

Figure 5 (Sensor-node) and Figure 6 (LCD-node).

Node-specific functions are represented as interfaces of

nesC. Additionally, a user inputs which node each inter-

face exists. In the above example, MySensor, Timer, and

TimerManage interfaces are on the Sensor-node, and Char-

acterLcd interface is on the LCD-node. (See Section 4.1)

A source program to decentralize should be written as

a task function in a nesC module. This is because the task

function is executed asynchronously at a system idle period,

which means the call stack is empty. This is convenient so

that the system keep the local variables while executing the

decentralized programs.

In generated programs, the local variables of the source

function are converted to module variables. Each generated

block (sequence of statements) is converted as a new task

function. Message sending and receiving process also is

inserted, which use SendMsg and ReceiveMsg interfaces in

the TinyOS API.

Table 1 shows the size of the source and generated pro-

grams of the example above. Note that this shows line and

byte counts of a nesC module file (or sum of two generated

nesC module files) without any comments, blank lines, and



module MainTask_SensorNode {

uses interface MySensor;

provides interface StdControl as TimerManage;

uses interface Timer;

//

uses interface SendMsg;

uses interface ReceiveMsg;

}

implementation {

uint16_t mainTask_batteryVoltage;

uint16_t mainTask_temperature;

task void mainTask() { post mainTask_0(); }

task void mainTask_0(){

mainTask_temperature = call 

MySensor.getTemperature() ;

sendMsg_mainTask_1();

}

task void mainTask_2(){

mainTask_batteryVoltage = call 

MySensor.getBatteryVoltage() ;

if (( mainTask_batteryVoltage < 4800 )) { 

sendMsg_mainTask_3();

} else { 

sendMsg_mainTask_4();

}

}

void sendMsg_mainTask_1() { ... }

void sendMsg_mainTask_3() { ... }

void sendMsg_mainTask_4() { ... }

void onReceiveMsg_mainTask_2(MsgBaseType *bmsg) {

post mainTask_2();

}

event TOS_MsgPtr ReceiveMsg.receive(TOS_MsgPtr m) {

MsgBaseType *msg=(MsgBaseType *)m->data;

switch(msg->msg_typeid) {

case MsgTypeId_MainTask_mainTask_2: 

onReceiveMsg_mainTask_2(msg); break;

}

return m;

}

// other declarations

event result_t Timer.fired() { ... }

:

}

converted

variables

generated

blocks

message 

passing 

procedures

interfaces on

Sensor-node

Figure 5. Generated Program for Sensor-
node (digest)

Table 1. Size of the Source and Generated
Programs

Line Counts Bytes

Source Program 35 913

Generated Programs 146 4531

redundant white spaces. This result shows that implemen-

tation of distributed software needs large programs and our

proposed method successfully reduces the program size that

we have to write.

We have confirmed the execution of the generated pro-

grams on the EmTOS[5], which is a TinyOS emulator on

Linux.

4.1 Decentralization of Configuration File

Our prototype system also supports decentralization of a

nesC configuration file[4]. A nesC configuration file repre-

module MainTask_LcdNode {

uses interface CharacterLcd;

//

uses interface SendMsg;

uses interface ReceiveMsg;

}

implementation {

uint16_t mainTask_temperature;

uint16_t mainTask_batteryVoltage;

task void mainTask_1(){

call CharacterLcd.clear() ;

call CharacterLcd.writeString("Temperature:") ;

call CharacterLcd.writeInteger(

mainTask_temperature) ;

sendMsg_mainTask_2();

}

task void mainTask_3(){

call CharacterLcd.writeString(

" ** LOW BATTERY: ") ;

call CharacterLcd.writeInteger(

mainTask_batteryVoltage) ;

post mainTask_4();

}

task void mainTask_4(){

call CharacterLcd.flush() ;

}

void sendMsg_mainTask_2 { ... }

void onReceiveMsg_mainTask_1(MsgBaseType *bmsg) {

MsgType_MainTask_mainTask_1 *msg = 

(MsgType_MainTask_mainTask_1 *)bmsg;

mainTask_temperature = msg->temperature;

post mainTask_1();

}

void onReceiveMsg_mainTask_3(MsgBaseType *bmsg) {

...

}

void onReceiveMsg_mainTask_4(MsgBaseType *bmsg) {

...

}

event TOS_MsgPtr ReceiveMsg.receive(TOS_MsgPtr m) {

MsgBaseType *msg=(MsgBaseType *)m->data;

switch(msg->msg_typeid) {

case MsgTypeId_MainTask_mainTask_1:

onReceiveMsg_mainTask_1(msg); break;

case MsgTypeId_MainTask_mainTask_3:

onReceiveMsg_mainTask_3(msg); break;

case MsgTypeId_MainTask_mainTask_4:

onReceiveMsg_mainTask_4(msg); break;

}

return m;

}

:

}

interfaces on

LCD-node

message

passing 

procedures

generated

blocks

converted

variables

Figure 6. Generated Program for LCD-node
(digest)

sents constituent components (modules) of application soft-

ware, and links between the components, as shown in Fig-

ure 7 (1). The user also inputs component placement infor-

mation written in JavaScript, which represents which node

each component will be placed in generated distributed soft-

ware, as shown in Figure 7 (2).

Our prototype system infers function placement (See

section 3) from these information, and automatically gener-

ates nesC configuration files for generated distributed soft-

ware. The execution node of a function (interface) is where

its connected component exists. Component diagrams of

source and generated configuration files are shown in Fig-

ure 8. Note that MainForTimer and MainForLcd compo-

nents manage application initialization, and GenericComm

component manages RF communication.
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StdControl

StdControl

GenericComm

SendMsg /

ReceiveMsg

SendMsg /

ReceiveMsg

Configuration for Sensor node

Source Configuration

Configuration for Lcd node

Decentralize

Figure 8. Component Diagrams

places.separateModules.add("MainTask");

p=new Place("SensorNode","0x01");

p.components.add("TimerC");

p.components.add("MySensorImpl");

p.components.add("MainForTimer");

places.add(p);

p=new Place("LcdNode","0x02");

p.components.add("CharacterLcdImpl");

p.components.add("MainForLcd");

places.add(p);

configuration AppC {

} implementation {

components MainTask; // to be separated

components MySensorImpl, TimerC, CharacterLcdImpl;

components Main as MainForTimer, Main as MainForLcd;

MainTask.Timer -> TimerC.Timer[unique("Timer")];

MainTask.MySensor -> MySensorImpl.MySensor;

MainTask.CharacterLcd -> CharacterLcdImpl.CharacterLcd;

MainForTimer.StdControl -> MainTask.TimerManage;

MainForTimer.StdControl -> TimerC.StdControl;

MainForLcd.StdControl -> CharacterLcdImpl.StdControl;

}

(2) Component Placement Information :

(1) nesC Configuration File:

Figure 7. Configuration File

4.2 The nRF24E1 Device

Then, we have applied our proposed method to real low-

profile hardware devices. We targeted the nRF24E1[14] de-

vice, which is Intel 8051 compatible one-chip microcom-

puter with RF communication function. This device is small

and low-cost (a chip itself without circuit board costs 5 dol-

lars), but very low-profile (8bits CPU, 4K bytes memory

Automatic Software Decentralization System

(Proposed method)

compact

libraries
+

stand-alone nesC program (source)

and configurations

decentralized 

nesC programs

nesC compiler (with SDCC)

executable binary codes

Remote Software Installation using RF

nRF24E1 devices

Figure 9. Automatic Deployment Flow

including code and data).

There is a project that implements TinyOS for 8051

platform[17]. However, we think the standard TinyOS API

is large for this low-profile device, thus we developed more

compact API and libraries for the nRF24E1 device, includ-

ing Timer, RF communication, AD converter, and so on.

For easy software deployment, we also develop a soft-

ware remote installation protocol via RF communication.
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temperature, and
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Figure 10. Prototype Devices

Figure 9 shows the data flow of our system. First, a stand-

alone source program written in nesC is decentralized into

distributed programs by our proposed method, then they are

compiled to executable binary codes by the nesC compiler

with SDCC[13] as a back-end, finally they are remotely in-

stalled into the target devices via RF communication.

We have developed some application hardware devices

shown in Figure 10. The example device collaboration is

the morning call service. The Sensor-node continuously

senses the outdoor brightness. The LCD-node shows the

brightness degree. And the Speaker-node beeps when the

brightness exceeds the threshold, which means sunrise in

the morning. All you have to do is just writing a sin-

gle stand-alone program which implements the scenario.

The system automatically generates the distributed software

which does not require the control node, and installs them

into the target devices. This shows the proposed method

successfully improves the ease of development.

5 Conclusion

In this paper, we have proposed an automatic software

decentralization method, which convert a stand-alone soft-

ware program into distributed software programs. In order

to execute the generated software on the low-profile devices

such as sensor network nodes and one-chip microcomput-

ers, we employ the programming language nesC[4] for a

decentralization target. We also have implemented applica-

tions with real hardware devices to exemplify the usefulness

of our proposed method.

There are a number of areas that need further investiga-

tion.

• The usefulness of our proposed method should be eval-

uated quantitatively with more practical applications.

• Generated distributed programs should be optimized

by using more advanced data-flow analysis and par-

allelism between statements obtained by such as Pro-

gram Dependency Graph[3].

• Currently generated software is deployed from a rich

device to low-profile devices. Maté[9] realize dynamic

software deployment directly between sensor-nodes by

using tiny virtual machines. We are also planning

dynamic software migration between low-profile de-

vices by implementing custom hardware microproces-

sors on FPGAs, which may be more low-profile and

cost-effective than using virtual machines.

• Extend source language specification in order to de-

scribe collaboration toward an array of multiple sensor

nodes easily.

• Software decentralization has many choices, ambigu-

ity and trade-offs. For example, code optimization

policies, which nodes an application should be exe-

cuted, and which application can be executed on de-

vices here. It is desirable that the system infers best

default choice, or offers several choices to users.

• Exception handling should be considered in the cir-

cumstances such as a communication error.
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