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SUMMARY In this paper, we discuss the construction of a large in-car
spoken dialogue corpus and the result of its analysis. We have developed
a system specially built into a Data Collection Vehicle (DCV) which sup-
ports the synchronous recording of multichannel audio data from 16 mi-
crophones that can be placed in flexible positions, multichannel video data
from 3 cameras, and vehicle related data. Multimedia data has been col-
lected for three sessions of spoken dialogue with different modes of naviga-
tion, during approximately a 60 minute drive by each of 800 subjects. We
have characterized the collected dialogues across the three sessions. Some
characteristics such as sentence complexity and SNR are found to differ
significantly among the sessions. Linear regression analysis results also
clarify the relative importance of various corpus characteristics.
key words: speech corpus, in-car speech recognition, perplexity, SNR

1. Introduction

Providing a human-machine interface in a car is one of the
most important applications of speech signal processing,
where the conventional input/output methods are unsafe and
inconvenient [1]. To develop an advanced in-car speech in-
terface, however, not only one but many real-world prob-
lems, such as noise robustness, distortion due to distant talk-
ing [2] and disfluency while driving, must be overcome [3],
[4].

In particular, the difficulty of in-car speech processing
is characterized by its variety. Road and traffic conditions,
the car’s condition and the movements of the driver change
continuously and affect the driver’s speech. From the inter-
face viewpoint, the difference in the navigator, e.g., a hu-
man operator or an automatic speech recognition system,
may also cause variability [5], [6]. Therefore, a large cor-
pus is indispensable in the study of in-car speech, not only
for training acoustic models under various background noise
conditions but also for building a new model of the com-
bined distortions of speech [7]–[10].

In order to keep pace with the ever-changing environ-
ment, it may be helpful to make use of various observed sig-
nals rather than to use the speech input signal alone. There-
fore, to develop advanced speech processing for in-car ap-
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plications, we need a corpus 1) that encompasses a wide va-
riety of driving conditions, and 2) from which we can extract
the conditions surrounding the driver. Constructing such an
advanced in-car speech corpus is the goal of the project de-
scribed in this paper.

For data collection, a specially built Data Collection
Vehicle (DCV) has been used for synchronous recording
of seven-channel audio signals, three-channel video signals
and vehicle-related signals. About 1 terabytes of data has
been collected by recording three sessions of spoken dia-
logue in about 60 minute of driving from each of 800 drivers.
Speech data for text read aloud has also been collected.

In the next section, we describe the DCV which was
specially designed for the multichannel audio-visual data
acquisition and storage. In Sect. 3, we present the details
of the data collection scenario. In Sect. 4, the basic statistics
of the collected corpus are summarized. Although the char-
acteristics of the collected data are calculated for three dif-
ferent navigation modes directed by, i.e., a Human Naviga-
tor (HN), a Wizard of OZ (WOZ) and an Automatic Speech
Recognition system (ASR), the aim of this section is not to
find a consistent model of their difference∗.

In Sect. 5, we show the results of speech recognition
experiments using language and acoustic models trained for
three dialogue modes. We also show the results of linear
regression analyses between word accuracy and characteris-
tics of the utterances for the three dialogue modes.

2. Data Collection Vehicle

The Data Collection Vehicle (DCV) is a car specially de-
signed for the collection of multimedia data. The vehicle
is equipped with eight network-connected personal comput-
ers (PCs). Three PCs have a 16-channel analog-to-digital
and digital-to-analog conversion port that can be used for
recording and playing back data. The data can be digi-
tized with 16-bit resolution and sampling frequencies up to
48 kHz. One of these three PCs can be used for recording
audio signals from 16 microphones. The second PC can be
used for audio playback on 16 loudspeakers. The third PC is
used for recording five signals associated with the vehicle:
the angle of the steering wheel, the status of the accelerator
and brake pedals, the speed of the car and the engine RPM.

∗In [5], experimental results comparing the acoustic and lin-
guistic features of the user’s dialogue utterances in different dia-
logue mode are analysed through simulated driving experiments.
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Fig. 1 Visual signals captured by the three cameras. (a) the driver’s face
(left upper), (b) the driver and the back view (right upper) and (c) front
view (right bottom).

Table 1 Specifications of recording devices.

Type of Data Specifications
Sound Input 16 ch, 16 bit, 16 kHz
Sound Output 16 ch, 16 bit, 16 kHz
Video Input 3 ch, MPEG1
Control Signal Status of Accelerator and Brake,

Angle of Steering wheel
Engine RPM, Speed: 16 bit, 1 kHz

Location Differential Global Positioning System

These vehicle-related data (Table 1) are recorded at a sam-
pling frequency of 1 kHz with 2-byte resolution. In addition,
location information obtained from the Global Positioning
System (GPS) is also recorded at a sampling frequency of
1 Hz.

Three other PCs are used for recording video images
(Fig. 1). The first camera captures the face of the driver. The
second camera captures the back view of dialogue between
the driver and the experimental navigator. The third cam-
era captures the front view through the windshield. These
images are encoded in MPEG1 format. The two remaining
PCs are used for controlling the experiment. The multime-
dia data from all systems are recorded synchronously. The
total amount of data is approximately 2 gigabytes for ap-
proximately a 60-minute drive during which three dialogue
sessions are recorded. The recorded data is stored directly
on the hard disks of the PCs in the car.

Figure 2 shows the arrangement of equipment in the
DCV, including the PCs, a power generator with batteries,
video controller, microphone amplifiers and speaker ampli-
fiers. An alternator and a battery are installed for stabilizing
the power supply. Wire nets are attached to the ceiling of
the car so that the microphones can be arranged in arbitrary
positions. Figure 3 shows the positions of the microphones
used for the data collection in the DCV. The average SNR at
each microphone position is listed in Table 2.

Figure 4 shows plots of the vehicle-related data such as
the status of brake and accelerator pedals, the RPM of the

Fig. 2 Configuration of DCV.

Fig. 3 Microphone positions for the data collection.

engine motor, and the vehicle speed.

3. Speech Material and Collection Scenario

We have carried out our extensive data collection from 1999
through 2001 including over 800 subjects under both driving
and idling conditions. The collected data types are shown in
Table 3. In particular, during the first year, we collected the
following data from 212 subjects: (1) pseudo information
retrieval dialogue between a subject and the human naviga-
tor, (2) phonetically balanced sentences, (3) isolated words,
and (4) digit strings.

In the 2000-2001 collection, however, we have in-
cluded two more dialogue modes such that each subject has
completed a dialogue with three different kinds of interface
systems. The first system is a human navigator (HN), who



TAKEDA et al.: CONSTRUCTION AND EVALUATION OF A LARGE IN-CAR SPEECH CORPUS
555

Table 2 Microphone positions and SNR at those positions.

# position ave. SNR (dB)
idling driving

1 driver headset - -
2 navigator headset - -
3 on the navigator dashboard 8.03 5.25
4 on the driver dashboard 12.25 7.87
5 on the navigator visor 10.32 7.40
6 on the driver visor 13.74 11.52
7 on the center ceiling, front seats 10.29 8.23
8 on the center ceiling, back seats - -
9-12 linear array, on the driver visor - -

Fig. 4 Vehicle-related signals. Brake and accelerator pedals, the RPM of
the engine motor, carspeed and steering wheel (from top to bottom).

Table 3 Speech materials recorded in the experiment.

1999 collection 212 subj.
Spoken dialogue with human navigator 11 min
Phonetically balanced sentences

(Idling) 50 sent.
(Driving) 25 sent.

Isolated words 30 words
Digit Strings 4 digit * 20
2000-2001 collection 600 subj.
Spoken dialog with human navigator 5 min.
Spoken dialog with WOZ system 5 min.
Spoken dialog with ASR system 5 min.
Phonetically balanced sentences

(Idling) 50 sent.
(Driving) 25 sent.

Isolated words 30 words
Digit Strings 4 digit * 20

sits on the back seat and converses naturally. The second one
is a wizard of Oz (WOZ) type system. The final one is an
automatic dialog set-up based on automatic speech recogni-
tion (ASR).

3.1 Multimode Dialogue Data Collection

The primary objective of the dialogue speech collection is

Fig. 5 A sample scene of dialogue recording using WOZ.

to record the three different modes of dialogue mentioned
earlier. It is important to note that the task domain is the
information retrieval task for all three modes.

To simplify the dialogue recording process, the navi-
gator prompts each task by using several levels of a task
description panel to initiate the spontaneous speech. There
are a number of task description panels associated with our
task domains. A sample set from the task description panels
is as follows: ’Fast food’, ’Hungry’, ’Hot summer, thirsty’,
’No money’, and ’You just returned from abroad’.

All of our recorded dialogues are transcribed into text
in compliance with a set of criteria established for the Cor-
pus of Spontaneous Japanese (CSJ) [12]. We have collected
more than 187 hours of speech data corresponding to ap-
proximately one million morpheme dialogue units.

3.1.1 Dialogue with Human Navigator (HN)

Navigators are trained in advance and have extensive infor-
mation for the tasks involved. However, in order to avoid
a dialogue divergence, some restrictions are placed on the
way they can speak.

3.1.2 Dialogue with Wizard of OZ System (WOZ)

The WOZ mode is a spoken dialogue platform which in-
volves a touch-panel input for the human navigator and a
speech synthesizer output. The system has a considerable
list of shops and restaurants along the route and the naviga-
tor uses the system to search for and select the most suitable
answer for subjects’ spoken requests (Fig. 5).

3.1.3 Dialogue with Spoken Dialogue System (ASR)

The dialogue system called “Logger” performs a slot-filling
dialogue for the restaurant retrieval task. The vocabulary
size of the task is 1,500 and the utterances are modeled using
bigram language model. The close-talking microphone is
used for the speech input in order to use Continuous Speech
Recognition Consortium (CSRC) standard triphone HMM
and a Julius decoder as an acoustic model and the LVCSR
engine [11], respectively.
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Fig. 6 Distribution of the task domain of all dialogue sentences.

3.1.4 Task Domains of HN and WOZ Sessions

We have categorized the dialogue sessions recorded through
HN and WOZ modes into several task domains. In Fig. 6,
we show a breakdown of the major task domains. It is easy
to see that approximately forty percent of the tasks are re-
lated to restaurant information retrieval.

3.2 Phonetically Balanced Sentences

In addition to the dialogue speech, each subject has read 50
phonetically balanced sentences in the car while the vehi-
cle was idling, and subsequently drivers have also spoken
25 sentences while driving the car. While idling, subjects
have used a printed text posted on the dashboard to read a
set of phonetically balanced sentences. While driving, we
have employed a slightly different procedure for safety rea-
sons. In this case, subjects are prompted for each phoneti-
cally balanced sentence from a head-set utilizing a specially
developed waveform playback software. The phonetically
balanced sentences are mainly used for acoustic model con-
struction.

4. Corpus Evaluation

In this section, the basic characteristics of the collected data
are given. Although statistics are calculated for each of the
three dialogue sessions, the aim is not presenting a particular
model of the difference among the sessions†.

4.1 Corpus Size

The characteristics of the corpus used in this analysis are
summarized in Table 4 for each dialogue session. We use
32,000 to 40,000 speech units uttered by 435 speakers for
the analysis. A “speech unit” is a segment of speech that
is separated by a silence of longer than 200 ms, therefore,
in this corpus, most “utterances” consist of a “speech unit”.
The boundaries between silences and utterances are deter-
mined manually. The average length of a drivers’ speech
unit in the HN session is longer than the other two sessions
in both duration, 2.26 sec., and number of morphemes, 8.72.

Since the dialogues consist of question-and-answer
pairs, the ratio between the driver and navigator (system) ut-
terances are not significantly different among sessions, i.e.,

Table 4 Corpus statistics for 435 speakers.

(a) size
HN WOZ ASR

Total(sec) 101430 73116 80978
Driver Operator 0.40 0.60 0.39 0.61 0.21 0.79

Speech Unit 40560 32883 40149
Driver Operator 0.44 0.56 0.42 0.58 0.40 0.60
duration/unit(sec) 2.26 2.05 1.07

Morph. 353875 195513 262354
Driver Operator 0.34 0.66 0.44 0.56 0.19 0.81

Morph./Unit 8.72 5.95 6.53
(b) complexity (entropy)

bi-gram trigram 18.1 7.7 14.1 7.1 9.1 6.6
vocabulary size 5001 3216 1839

(c) Acoustic characteristics
close visor close visor close visor

SNR[dB] 23.0 10.6 24.0 11.3 26.0 12.9
(d) speaking rate (mora length)

SPR[msec/mora] 144.3 143.5 149.1

Fig. 7 Overlap between the vocabularies in difference sessions.

about 40-45% of the utterances are made by the driver.

4.2 Complexity of the Utterance

As seen from the table, the vocabulary size used in the ASR
session is less than half of that in the HN session and that
for the WOZ session is in-between the two sessions. The
overlap between the vocabularies in the different sessions
is shown in Fig. 7. The vocabulary of the ASR session can
be regarded as a subset of the HN session. The additional
vocabulary of the HN session mainly consists of the names
of restaurants and out-of-task words such as “business trip”,
“birthday party”, “hungry”.

The bigram and trigram entropies of the utterances are
almost proportional to the session vocabulary sizes, i.e.,
18.1, 14.1 and 9.1 for HN, WOZ and ASR, respectively††.

†Results of the comparative analysis of dialogues with different
navigators has been reported in [5]. In [5], utterances under sim-
ulated driving conditions are analyzed, whereas utterances under
real driving conditions are collected in this corpus.
††The causes of the characteristic differences between the

human-human and human-machine dialogues are discussed in [5].
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4.3 Acoustic Condition

The SNR condition of each utterance is estimated from the
speech signal by fitting a two-mixture Gaussian distribution
to the histogram of log-power values that is calculated in a
frame-by-frame manner over an utterance. After finding two
Gaussian distributions, the difference between the two mean
values is used as the SNR of the utterance. Therefore, the
estimated SNR is not accurate if the SNR of the original sig-
nal is negative [13]. The SNR of the utterances in the ASR
session is better than those of the HN and the WOZ ses-
sions by approximately 2 dB. Since the driving conditions,
and therefore noise conditions, are designed to be the same
across all three sessions, the driver speaks in a louder voice
in the ASR session.

4.4 Speaking Rate

We define the speaking rate by using the average mora
length. It is calculated using the result of forced alignment
of the reference monophone label. The speaking rate of the
utterances in the ASR session is slower than that in the HN
and WOZ sessions, by approximately 5 msec/mora.

5. Speech Recognition Experiments

In this section, we discuss the characteristics of the corpus
in terms of speech recognition accuracy.

5.1 Experimental Setup

Language models were constructed for each of the three ses-
sions. The size of the text data for language model train-
ing is shown in Table 5. A training text was tagged by
the morphological analyzer ChaSen [14], and then manually
corrected. The morphological label includes part-of-speech
information. Forward word bigram and backward word tri-
gram models without any cutoffs are trained. An “open
language model” is trained for each speaker, for which the
utterances made by the speaker were not used, whereas a
“closed language model” is trained using all utterances.

Two different acoustic models, i.e., the “close-talking”
and “visor” models, were trained on the basis of the speech
captured through a close-talking microphone (#1 in Fig. 3)
and s distant microphone (#6 in Fig. 3), respectively. The
number of speakers used for the acoustic model training is
listed in Table 6. Excluding short utterances of less than ten
syllables, (most of them are yes/no answers), 22.4 hours of
speech signals were used for the experiment. The break-
down of the data is: 11,746 utterance units, 11.4 hours for
the HN sessions; 8,550 utterance units, 7.84 hours for the
WOZ sessions; and 4,878 utterance units, 3.10 hours for the
ASR sessions.

In order to perform an open speaker set experiment for
acoustic models, we divided all speakers into five groups
and trained five different HMMs using the utterances of the

Table 5 Training sentences for language models used for recognition
experiments.

HN WOZ ASR
number of subjects 535 586 575

male 342 337 368
female 193 209 207

# of speech units 22240 19044 21289
# of morpheme 149213 117250 66612
vocabulary size 5532 3694 2083
# of bi-grams 35095 22277 9850
# of trigrams 67972 44322 18403

Table 6 Training sentences for acoustic models used for recognition ex-
periments.

HN WOZ ASR
number of subjects 534 527 512

male 341 338 326
female 193 189 186

Fig. 8 Recognition performance for the utterances in three sessions.
“open” represents the results using both the open language model and the
open acoustic model, whereas “close” represents the results using both the
close language model and the close acoustic model.

four speaker groups. The feature parameters for the HMM
acoustic model were 12MFCC, 12∆MFCC and ∆ log power.
Although the original signal is sampled at 16 kHz, the band-
width was limited to the range from 250 Hz to 8000 Hz. The
basic structure of the HMM is three-state continuous density
triphones that share 2000 states with 32 Gaussian mixture
components. All triphones have a simple left-to-right topol-
ogy except for the short pause which has a transition from
start state to final state. Julius was used as the decoder.

5.2 Performance Comparison over Sessions

The recognition performances for the utterances collected in
three sessions are shown in Fig. 8. The performance is worst
for the HN session utterances and best for the ASR session.
In the visor microphone case, in particular, the performance
difference between HN and ASR becomes approximately
15%. The difference in recognition accuracy among dia-
logue modes is remarkable under noisy conditions.
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Fig. 9 Word accuracy score and SNR value averaged over each speaker
for the utterances in the HN (human navigator) session. Thick and thin lines
indicate, 10%-tile, average and 90%-tile accuracies at the SNRs. Broken
and solid lines correspond to close-talking microphone and visor micro-
phone results, respectively.

5.3 Performance Comparison over SNR, Entropy and
Speaking Rate

In order to show the variabilities contained in the corpus,
we have calculated the distributions of the recognition accu-
racy against the various characteristics of the speaker, i.e.,
SNR, entropy of the utterance, average mora length, and its
standard deviation, for the utterances in the HN (human nav-
igator) session.

In Fig. 9, the average word accuracy and SNR are plot-
ted for all drivers. When the close-talking microphone is
used, the dependency of the recognition accuracy on SNR is
not so high, i.e., it is approximately 0.3%/dB. Cross speaker
variability seems to be much larger. For the visor micro-
phone speech, however, the dependency becomes higher,
and reaches approximately 1.25%/dB†.

In Fig. 10 the average word accuracy and entropy are
plotted for all drivers. The average entropy of the speaker
ranges from 3 to 6 bits. (The entropy of each utterance is
calculated as the crossentropy against the trigram language
model, then averaged for a speaker.) There is no difference
between close-talking and visor microphones in terms of the
dependency of the recognition accuracy on the entropy. It
can be seen that the relationship between the entropy and
the recognition accuracy is inversely linear and highly cor-
related.

In Fig. 11, the average word accuracy and mora length
are plotted for all drivers. Unlike those reported for the
monologue corpus [15], the effect of the speaking rate on
the accuracy of dialogue speech recognition was small. As
shown in Fig. 12, on the other hand, the average word accu-
racy depends more heavily on the variability (standard devi-
ation) of mora length of a speaker.

Fig. 10 Word accuracy score and entropy value averaged over each
speaker for the utterances in the HN (human navigator) session. Thick
and thin lines indicate, 10%-tile, average and 90%-tile accuracies at the en-
tropies. Broken and solid lines correspond to close-talking microphone and
visor microphone results, respectively.

Fig. 11 Word accuracy score and mora length averaged over each
speaker for the utterances in the HN (human navigator) session. Thick and
thin lines indicate, 10%-tile, average and 90%-tile accuracies at the mora
length. Broken and solid lines correspond to close-talking microphone and
visor microphone results, respectively.

5.4 Regression Analysis

In Fig. 13, the correlation coefficients between word accu-
racy and entropy, SNR, mora length and its deviation are
plotted. The highest linear correlation is found between ac-
curacy and entropy. Particularly for the ASR session, the
correlation coefficient of approximately 0.77 was obtained.
The correlation between word accuracy and SNR is high in
visor microphone speech cases where the correlation coeffi-
cient was approximately 0.25 to 0.28.

†It is a generally known fact and is not found by the authors that
performance improvement due to the SNR improvement saturates
under the high SNR condition.
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Fig. 12 Word accuracy score and standard deviation (S.D.) of the mora
length distribution over each speaker for the utterances in the HN (human
navigator) session. Thick and thin lines indicates 10%-tile, average and
90%-tile accuracies at the S.D. of mora length. Broken and solid lines
correspond to the close-talking microphone and visor microphone results,
respectively.

Fig. 13 Correlations analysis results between recognition accuracy and
various corpus characteristics.

6. Discussion

In Figs. 9-12, 80% distribution ranges of accuracy are also
given. A thick line shows the average accuracy and thin lines
indicate the lower and upper bounds of the 80% of speak-
ers. Although each point spreads over a wide range of ac-
curacy in the original scatter plot, the averaged value shows
a clearer relationship between the accuracy and factors, i.e.,
SNR, entropy, mora length and its standard deviation.

In Table 7, the average correlation calculated along the
thick line and 80% distribution ranges are listed for each
factor. The entropy, SNR (visor microphone case only) and
the standard deviation of mora length have a high correla-
tion with averaged accuracy, in this order. It can also be
seen that the distribution range of the accuracies can be lim-
ited to 20% (for the entropy case) or 25% (other cases) by
disregarding 20% outliers.

On the basis of the above results, some important facts

Table 7 Correlation between word accuracy and corpus characteristics.
80% distribution ranges are calculated by averaging the distance between
the two thin lines, i.e. 10%-tile and 90%-tile values, plotted in Fig. 9 to
Fig. 12. The average correlation shows the correlation between the charac-
teristic values, i.e., SNR, entropy, speaking rate and its deviation, and the
“averaged” accuracy at that region, that is given by the thick lines in Fig. 9
to Fig. 12. All values are calculated for human navigator sessions.

SNR entropy mora len.
S.D. of

mora len.
for the visor mic.

80% distribution range (%) 27.5 21.4 26.8 27.3
average correlation 0.97 −0.99 0.31 −0.89
for the close-talking mic.

80% distribution range (%) 25.9 20.0 25.6 25.4
average correlation 0.33 −0.99 0.36 −0.93

concerning speech variability under real driving conditions
have been found in the corpus.

• Even under the same condition, the distribution of the
accuracy had a range up to 40%. 20% outliers con-
tribute 13 to 20% of the 40% range.
• The SNR distributes in a range from 5 to 15 dB at the

visor position, however, the correlation between SNR
and accuracy was low, i.e., less than 0.3.
• A linear relation between accuracy and entropy was

found.
• Unlike the monologue corpus results, the dependency

on the speaking rate was small in the accuracy of dia-
logue speech recognition. The variation of the speak-
ing rate has correlation with the accuracy.

From the fact that such important results can only be found
by very large scale experiments, we can conclude that the
in-car speech corpus will play a vital role in further speech
research.

7. Conclusion

In this paper, we have presented a brief description of a
large corpus of in-car speech communication. The cor-
pus consists of synchronously recorded multichannel au-
dio/video signals, driving signals, and a differential GPS
reading. For a restaurant information query task domain
speech dialogues were collected from over 800 drivers in
three different modes, namely, human-human, WOZ and
human-machine. In addition, we have experimented with an
ASR system for collecting human-machine dialogues. Ev-
ery spoken dialogue is transcribed with precise time stamp.

This paper also reported the characteristics of the col-
lected conversational utterances. Four hundred and thirty
five drivers’ utterances for three different modes are char-
acterized by vocabulary size, average perplexity of the sen-
tences, SNR and speaking rate. Furthermore, through large-
scale speech recognition experiments, several important re-
sults have been found. 1) The correlation between SNR and
accuracy is low; 2) there is a linear relationship between ac-
curacy and entropy; and 3) the dependency on the speaking
rate was small in the accuracy.



560
IEICE TRANS. INF. & SYST., VOL.E88–D, NO.3 MARCH 2005

Through these discussions, the effectiveness of the cor-
pus in real-world speech recognition research was clarified.
Currently, the corpus is being used for various speech re-
lated research including distributed microphone approach
for in-car robust speech recognition [16], a statistical Spec-
tral Subtraction method [17], corpus based dialogue control-
ling [18] and the driver verification [19].
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