
Cogma: A Middleware for Cooperative Smart Appliances
for Ad hoc Environment

Nobuo Kawaguchi

Information Technology Center, Nagoya University
1, Furo-cho, Chikusa-ku, Nagoya ,464-8601, Japan, kawaguti@itc.nagoya-u.ac.jp

ABSTRACT

With recent advances in hardware technology, we now
have many information appliances which can be connected
to a network. However, each device often only serves a
limited function and is not designed to integrate with other
devices or support different environments. We must
establish a framework for network devices that can
cooperate with other devices. This study proposes a
middleware for the construction of an ad hoc network that
does not require a dedicated server and that provides a
cooperative application between smart appliances. Our
middleware adopts mobile agent technology to enable
dynamic software installation. With this feature, we can
upgrade software or change the configuration of embedded
devices without un-installing them.

Keywords: Ubiquitous Computing, Pervasive Computing,
Ad hoc Network, Mobile Agent

1 INTRODUCTION

With recent advances in technology, various information
appliances are becoming embedded and used in every day
life. In an automobile, for example, a large number of
embedded microprocessors are used to control the air
conditioning, navigation, and stereo. In a house, the TV set,
refrigerator, facsimile, air conditioner, and many other
electric appliances have an inbuilt microcomputer chip,
however, each appliance is designed to work independently.
As a result, you cannot playback music contained in a
notebook PC on the car stereo, or transfer location data
from your PDA to the car navigation system. Currently,
there are many embedded appliances but they do not work
in cooperation with each other as each appliance only has
the minimum required hardware and software to reduce
costs and no middleware is available to integrate these
appliances. We must establish a framework for providing
network access for devices that will increase in variety, so
that we can build an expandable system that can support
new and dynamic operating environments.

In this paper, we propose a middleware named “Cogma”
that enables the construction of an ad hoc network that
connects information appliances and various sensors that
are brought to conference rooms, exhibition sites, homes
and offices, without requiring a dedicated server, and that
creates cooperative applications and requires no presetting.

Cogma (Cooperative Gadgets for Mobile Appliances) is a
group of cooperative gadgets or software for mobile
information appliances. These “mobile” appliances include
those carried by people, such as cellular phones and PDAs,
as well as information equipment dynamically deployed in
conference rooms and exhibition sites, and semi-fixed
information equipment such as “smart” home electric
appliances that can be freely moved around within a house.
The latter appliances have been designed to sit in a fixed
location and various settings are required at the time of
installation. Homes now have many such appliances and
each requires specialized knowledge for its initial setup.
Even if the settings of an individual appliance are simple,
there are many appliances requiring setup. Our purpose of
the study is to minimize such a humble operation for
appliances.

Our middleware has adopted mobile software technology
for dynamic code installation and using this feature, it is
easy to upgrade software or change the configuration of an
embedded appliance after it is installed. It is also easy to
build a cooperative application by connecting various
appliances that do not require any individual manual
settings. One of these application is a smart conference
room with a projector and a screen, lighting and audio
equipment, and a group of PCs linked together. Another
example is a smart living room with temperature and photo
sensors, air conditioning, lighting, a TV set, and a stereo
that function in harmony. The middleware is built on an ad
hoc network technology, and the adoption of dynamic
software makes it flexible and thus it can adapt to various
different environments.

In the following, we present the components for the
software system that are required for connecting embedded
appliances in Section 2, and discuss the design and
implementation of our middleware in Section 3 and the
subsequent sections.

2 REQUIREMENTS FOR DYNAMIC
COOPERATION BETWEEN EMBEDDED

APPLIANCES

In this study, we have assumed that the embedded
appliances under consideration have network
communication capability. We also assumed that these
devices are able to detect a link connection or disconnection
to other nodes, and thus they can form an ad hoc network.
We consider that the following characteristics are required

for dynamic cooperation between the various embedded
devices.

(A) Self Understanding of Basic Functions
Generally the information necessary for the operation

of an individual appliance is only known by that
appliance. It is required that each appliance stores the
information necessary for its own functions, and
provides it when required by another system. In
addition, each appliance should be fully operational
with this information alone.

(B) Dynamic Modification and Addition of Functions
Once an embedded appliance is installed, it is not a

simple task to re-install software. Many appliances
support firmware upgrades but the use of a dedicated
PC and software, or at minimum rebooting, is required.
It is required that the basic software can be modified
and added to through the network while the system is
operational.

(C) External Controllability
For embedded appliances with networking capability,

it is useful if their information can be externally
accessed, and they can be controlled via a remote
system. This feature enables embedded appliances
that have no physical user interface to be integrated
with other appliances through a remote control device.

(D) Operable with Limited Resources
Generally, embedded appliances have only limited

memory and CPU power. For such appliances to
remain operable, it is required that the minimum set of
functions and other functions be implemented
separately.

Embedded appliances with the above features can operate
cooperatively by dynamically recognizing each other’s
functions. External monitoring is also possible with feature
(C), however, considering the hardware limitations of
embedded appliances, implementation should be as simple
as possible.

In this study, we also assume that the granularity of state
changes in each appliance is approximately once in five
seconds. A major reason for this is that network and other
environmental changes are detected by polling.

Cogma Core

Embedded ManagerLink Manager

Application
Codgets

CogManager

Protocol Codgets
TCP Manager

Control
Codget Sensor

Codget

Figure1: Module Hierarchy

3 DESIGN OF MIDDLEWARE TO
FACILITATE COOPERATION AMONG

EMBEDDED APPLIANCES

This section describes the design of Cogma (Cooperative
Gadgets for Mobile Application), which is middleware to
facilitate cooperation among embedded devices. To satisfy
the above requirements, we employed mobile software
technology in Cogma. We satisfy requirement (B) by
designing most components to be transportable. Therefore,
we designed the system in the hierarchical form shown in
Figure 1. In our middleware, the basic units are
transportable components called ‘codgets’ (Cooperative
Gadgets). We call each device which runs the middleware a
‘node’. Each codget can move over the communication
links between the nodes. For requirement (A), we
developed an ‘Embedded Manager’ to manage the
resources of the appliances. The Embedded Manager is
also a codget, and thus it is managed by ‘CogManager’
which manages all codgets. Requirement (C) is realized by
employing a codget that acts as an interface between the
external node and its internal codgets. Finally, for
requirement (D), we construct each codget to be as small as
possible. For example, in the CogManager, we separate the
management mechanism from the graphical user interface
and implement each of them in a different class of codget.
With this separation, embedded appliances which have no
physical user interface can reduce memory consumption.
For the operation of small memory embedded devices, we
adopt Personal Java 1.1.3.

In the following, we explain each component of Cogma.
- Base System (Cogma Core)

This module manages the dynamic transportation of
software. All other modules can be modified or
exchanged while this system is running.

- Codget Manager (CogManager)
This module manages each codget and controls the

registration and deregistration of codgets. The module
also plays an important role as the interface between the
link manager and the codgets.

- Communication Link Manager (Link Manager)
This codget monitors each communication link, and

notifies the CogManager of a ‘connection’ or
‘disconnection’ of a link. This codget also sends and
receives codgets over the links.

- Embedded Device Manager (Embedded Manager)
This codget controls the modules that are inherent to

each devices such as sensors and switches. Embedded
managers in the same network exchange information
with each other.

- Protocol Codgets
These codgets provide protocols for communication

between codgets or between nodes.
- Application Codgets

Device

Mobile Appliance

Embedded System
Micom Board(H8)

Mobile Appliance

Embedded System
CPU & Network (Lamb)

Embedded OS(Linux)
Embedded JavaVM
Cogma System

Codget Codget

Control FirmWare

Note PC/ PDA

Windows

JavaVM

Cogma System

Codget Codget

NetworkIF

Device

Embedded System
Micom Board(H8)

Embedded System
CPU & Network

Embedded OS(Linux)

Embedded JavaVM

Cogma System
Codget Codget

Cotrol Firmware

RS232c

Figure2: Relationship among Devices.

These codgets implement individual cooperative

applications.
Since modules under the CogManager are implemented

as a codget, they can be dynamically modified or
exchanged during run-time. By using a protocol codget, it is
possible to dynamically deploy a new network protocol that
is adapted to the current environment or situation. As
illustrated in Figure 2, Cogma works on a variety of devices
including notebook PCs and embedded devices.

3.1 Basic Module Unit: Codget

Our middleware is designed to use software modules
called codgets. A codget corresponds to a mobile agent in a
mobile agent system. However, a codget is not necessarily
to move because it is sometimes used to manage resources,
provide a protocol, and implement a manager. Though, a
codget enables the dynamic system updates[5]. Table 1 lists
the basic APIs for codgets. A codget can be stopped by
external control, and can be made permanent by serializing.
When a Codget is moved, it does not always carry the
program code. The code is sent on demand to reduce the
transmission overhead. Each codget has a unique CodgetID
that corresponds to the initiating host. Since the CodgetID
never changes, even when the codget is moved or serialized,
it is used in communication between codgets as will be
described in the next section.
3.1.1 Communication between Codgets

To implement the middleware and application as simply
as possible, Cogma has no dedicated method such as
messaging systems for communication between hosts or
between codgets. Instead of using a messaging system,
Cogma adopts a unique solution to enable cooperation
between codgets. In this method, when a codget that has
the same CodgetID is registered at the same node
(CogManager), the onSame method in the existing codget is
called with the newly registered codget as an argument.
Thus, the existing codget can directly access the stored data
of the newly registered codget. Because of this feature, no
two codgets within a node can have the same ID. This

feature also simplifies the programming of the distributed
system.

We consider here a codget that collects information
between nodes. This codget, once it has been registered
locally, moves to another node while leaving a copy of
itself at the local node by calling the “copyTo” API on
CogManager. After collecting information at another node,
the codget returns to the local node. Then the onSame
method of the copy at the local node is called to obtain the
necessary data from the returned codget. By using this
method, synchronization of information between two
codgets can be performed easily. Additionally,
communication within the same node and communication
between different nodes can be performed using a very
similar procedure.

3.1.2 Protocol Codget

Communication between codgets that do not know each
other is implemented with a codget called ‘Protocol
Codget’. Unlike a regular codget that has a unique
CodgetID for each initiation, CodgetID of a protocol codget
corresponds to a protocol itself, similar to a TCP port
number. In general, to implement a standardized protocol,
it is necessary to write a program that conforms to the
protocol specifications. By using our method, a protocol
codget, rather than a protocol specification, is distributed as
a library so a user can implement a protocol simply by
calling the library.

 Protocol codget is also a codget. Therefore, when
identical protocol codgets arrive at a node, ‘onSame’
method of the existing protocol codget is called with the
newly arrived protocol codget as an argument. Usually,
several codgets executing a same program code can exist on
the same node, but several protocol codgets are not allowed
to exist on the same node because identical protocol
codgets have identical CodgetIDs. Regular codgets have
different CodgetIDs if they are initiated at different nodes
or times. This feature facilitates the implementation of
cooperative applications.

3.2 Codget Management

The CogManager, which manages codgets, also controls
managers such as the LinkManager and EmbeddedManager.
They will be described in the following sections. The
methods ‘register’ and ‘unRegister’ enable each codget to
register or unregister an another codget. By using them,
codgets can form a group with a hierarchical structure. The
method ‘registerLinkMonitor’ registers the codget itself as
a LinkMonitor that receives the notification from the
LinkManager. When the LinkManager sends notification of
the arrival of a new node, the ‘onNew’ method on the
LinkMonitor is called. Also, when the LinkManager sends
notification of the disappearance of a node, the ‘onBye’
method on the LinkMonitor is called.

 By using the method ‘copyTo’ on the CogManager, a
codget can move to an adjacent node. In its basic
configuration, Cogma can only copy a codget to the
adjacent node. To move a codget over the network, a
network codget is required to distribute the codget.

3.3 Communication Link Management

Cogma supports various communication links including
wired Ethernet, IEEE802.11b, serial, and infrared(IrDA).
The LinkManager controls the link, notes any state changes
of a link and transports codgets over it. The LinkManager
only controls a single hop of communication. For multi-
hop communication, a codget that implements a network
protocol is used as a Flooding Codget as described above.
We have already proposed the ad hoc protocols with
MAGNET[1]

When there is a change in a communication link due to
the arrival of a new node or the movement of an existing
node, the LinkManager notifies any codgets that demand to
be informed of the state change(Such codgets are called
LinkMonitors). Each Codget operates independently in
response to changes in a link. For example, a codget that
configures the network based on the link state, performs a
network recalculation.

3.4 Embedded Manager

To support the self-understanding of each node, we
develop the “Embedded Manager”. EmbeddedManager
manage the various sensors, and control devices such as
temperature sensor, photo sensor, light controller, etc. First,
we define the abstraction of the sensor and control devices.
For sensor devices, we assume that there are only three
types of sensors, the (1) On-Off sensor, (2) Scalar Sensor
and (3) Vector Sensor. Then, for each sensor, we define the
following attributes: (A)Sensor Type, (B) Max Value,
(C)Min Value, (D) Metric, (E)Resolution, (F)Sensor Value,
and (G) Polling interval. For control devices, currently, we
assume there are 10 types of functions: (1)On-Off, (2)Up-
Down, (3)Pause-Go, (4)Stop, (5)Record, (6)Play, (7)Search,
(8)Input-change, (9)Output-change, and (10)Direction-
control. The controlling device is also named according to
the media it controls, for example, “Light”, “Sound”,
“Movement”, “Image”, and so on.

 By the abstraction of each device, we can develop
embedded managers to manage the sensor and control
devices. The embedded manager should have the ability to
register and discover each device. In our implementation,
the embedded manager on each node exchanges
information about its own sensor and control devices.

 When an application wants to use a specific device, the
application request the embedded manager to locate the
spec-object in the abstract form described above using a
protocol codget named “LocalEmbProto”. This means that

the application implements the “EmbeddedMonitor”
interface which monitors the arrival of new devices. If the
embedded manager identifies a device that matches the
specifications, the manager returns the matched node
information to the application. Otherwise, the embedded
manager asks other nodes about the specified device using
an “EmbProto” protocol codget.

3.5 Security and Group Management

A system that can be controlled externally via a network
is required to have a high level of security. Cogma has an
authorization control system based on group
management[4] where each node belongs to a group that
has several authorization levels. A codget that is
transported within a group that has management
authorization has the privilege of operating the system, and
is thus different from other codgets. This feature prevents
malicious attacks from a system that does not belong to one
of the appropriate groups. Each Cogma system has a group
management mechanism for obtaining the group
participation state of each node. Since the group definition
itself is implemented with mobile software, it is possible to
create a variety of groups depending on their status, for
example, groups for link state, location, and time. For group
authentication in an ad hoc environment, we use a digital
signed file to validate the code. In this method, belonging
to a group authorizes participation in that group. We are
also considering the use of tamperproof hardware[6].

4 HARDWARE ENVIRONMENT

It is difficult to build a CPU into all embedded
appliances, and therefore, to control appliances, Cogma
uses a microprocessor system that has multiple IO ports.
We chose a 16-bit H8/3664 microprocessor for this purpose.
For the controller CPU, we used the LAMB-EM-01 (5x86,
133MHz) equipped with a PCMCIA wireless LAN card.
These devices are connected with an RS-232C cable
(Figure 2). The H8 microprocessor supports a universal
infrared remote controller that can control many types of
domestic electric appliances. The LAMB-EM-01 runs on
Linux and Personal Java 1.1.3, and since Cogma operates
on PCs and PDAs (Sharp Zaurus), our prototype system
employs cooperative software in order to communicate
between these devices.

Unlike notebook PCs that have a powerful CPU and a
large memory, the Cogma system in an embedded device
operates with limited resources. It implements the
minimum necessary components without screen display
functions or graphical user interfaces.

Figure 3 shows an operation screen of the current Cogma
system. On this screen, Cogma is running on two nodes
and two CiCs(Node Monitor) are running on each node.

 Figure 3:Cogma Operating Screen

 Implemented Prototype Application and Experience
We have implemented several applications which utilize

our middleware Cogma such as the control of a fan, a
thermo sensor, and so on. One of them is the
“SmartMeeting” system shown in Figure 4. SmartMeeting
supports a user in using the meeting room devices such as
the projector, light, and presentation system, in an ad hoc
manner. This means that the user is not required to
manually ser up each device to work, even if the user is
using to this meeting room for the first time. Each device in
the room is equipped with a Smart Appliance which is run
by Cogma. When a user enters the room, the user’s
Notebook PC initiates an ad-hoc network among the
appliances in the room using the wireless network. Then,
the SmartMeeting control panel lists the devices in the
room on the notebook PC screen as shown on the right-
hand side of Figure 4. When the user wants to start the
presentation, the user simply “Opens” the presentation file,
then pushes the “Start” button. In response, the light will
turn off, the projector will turn on, and the presentation will
start. The user can control the presentation from his own
Notebook PC using the SmartMeeting control panel.

We implemented this application using an Embedded
Manager, a SmartMeeting control panel codget, and three
embedded codgets for each smart appliance. On the basis of
this experience, we confirm that it is very easy to develop
such applications based on our Embedded Manager. We
simply created three controlling codgets and wrote their
specifications. Then we coded the control panel with the
required specifications. Communication between nodes is
facilitated by Embedded Manager, thus the control panel
only needs to ask the local Embedded Manager about the
specified devices.

Smart Appliance to
Control the Projector

Smart Appliance to
Control the Light

NoteBookPC

NoteBookPC

Smart Appliance for
Presentation

VGA
232C

100v

Figure 4: Overview of SmartMeeting

5 RELATED RESEARCH

There are a number of current research projects which
share a similar framework, which include Jini[7], and
Hive[8], however, these technologies do not support ad hoc
networks or multilinks because they use Java RMI. With
Jini, the users and the service providers are clearly
separated by the Lookup server, and thus it differs from
Cogma which enables the dynamic transportation of
codgets to each node.

STONE[9] is an example of a dynamic cooperative
system. STONE is based on finding dynamic services, since
it is a framework that can combine services. However, the
functional units and service resolver are independent, which
is differs from Cogma whose components have the same
configuration.

SONA[11] of the Smart Space Lab[12] is targeted at
achieving autonomous cooperation among home appliances.
It uses Jini for the lookup service that detects appliances
and Aglets[14] for the dynamic installation of software.
Aglets has no detection function, but the adoption of Jini
seems to support a dynamic environment. In the Smart
Space Lab, there are a number of appliances are installed,
however, the system does not work in ad hoc environments
such as another room because the system components are
not in same configuration.

MAGNET[1] provided the basis for building Cogma and
the experience gained from it was used in the development
of Cogma. The greatest difference between Cogma and
MAGNET is that the MAGNET design assumes a
component similar to a notebook PC that has a screen,
network, keyboard and mouse, whereas Cogma does not
necessarily require such elements. This feature influences
many aspects of the system design. MAGNET used the
latest JDK available at the time of its development, while
Cogma uses Personal Java for use in embedded devices,

although this is beginning to be outdated. With MAGNET
we adopt the use of an emulation environment where the
appliances are controlled by a “God” who can monitor all
communication. In the emulation environment, rebooting is
required for reconnection and reconfiguration, however, for
embedded devices, rebooting should be keep to a minimum.
However, for distributed software development, the
monitoring of communication is a required function. The
CiC function that monitors software operations in
embedded appliances can be used as a platform for efficient
Cogma software development.

6 SUMMARY

We have proposed and implemented Cogma, which is a
middleware for building cooperative applications that
operate between embedded devices. Based on mobile
software technology and the experience gained from the
development of MAGNET[1], Cogma is a system with
dedicated functions for embedded appliances. It can realize
a dynamic application within a simple framework. We have
successfully built the SmartMeeting application to
exemplify the usefulness of our system. Based on this
experience, we confirm that the Embedded Manager
simplifies the development of the cooperative application.
The simple communication framework of the Codget also
contributes to the easy development of distributed
applications.

We are also considering the application of Cogma to
home appliances that have already been installed [13]. For
documents and the current state of development of Cogma,
please visit the Cogma Project Web site [15].

REFERENCES

[1] Nobuo Kawaguchi, Katsuhiko Toyama, and
Yasuyoshi Inagaki, MAGNET: Ad-Hoc Network
System based on Mobile Agents , Special Issue for
Mobile Agents for Telecommunication Applications ,
Computer Communication, Vol.23, pp.761--
768(2000).

[2] Nobuo Kawaguchi, Yasuyoshi Inagaki, Multi-Link
Ad-Hoc Communication System based on Mobile
Agents,In Proceedings of the ACIS 2nd International
Conference on Software Engineering, Artificial
Intelligence, Networking & Parallel/Distributed
Computing(SNPD'01), pp.311--318(2001).

[3] Shunichi Sugiura, Nobuo Kawaguchi, Katsuhiko
Tonoyama, and Yasuyoshi Inagaki: Proposal of a File
Management System Using Mobile Agents, IPSJ,
DiCoMo 2000, pp.145-150 (2000). (In Japanese)

[4] Yuuki Miyagoshi, Nobuo Kawaguchi, and Yasuyoshi
Inagaki: Flexible Group Management on Ad Hoc
Network Using Mobile Agents, in Proceedings of the
4th International Symposium on Wireless Personal

Multimedia Communications(WPMC2001), pp. 835--
840(2001).

[5] Nobuo Kawaguchi, Katsuhiko Tonoyama, and
Yasuyoshi Inagaki: Dynamically Expandable
Software System Based on Mobile Agents, IPSJ,
Summer Project Symposium Reports, pp.71-78
(1999).(In Japanese)

[6] Hiromi Haruki, Nobuo Kawaguchi, and Yasuyoshi
Inagaki: Mobile Agent Protection Method Using
Tamperproof Hardware, IPSJ, DiCoMo2001, pp.43-48
(2001). (In Japanese)

[7] Sun Microsystems. Inc. :`Jini Architecture
Specification Version 1.1,'
'http://java.sun.com/jini/specs/(2000).

[8] Nelson Minar, Matthew Gray, Oliver Roup, Raffi
Krikorian , and Pattie Maes,``Hive: Distributed
Agents for Networking Things,'' ASA/MA'99(1999).

[9] Masaki Minami, Hiroyuki Morikawa, and Yuki
Aoyama: Design of a Network Service Synthesizer,
Technical Report of IEICE, IN2000-192, pp.1-8
(2001).

[10] Tomoko Itao, Tetsuya Nakamura, Masato Matsuo,
Tatsuya Suda, Tomonori Aoyama, “The Model and
Design of Cooperative Interaction for Service
Composition,” IPSJ, DiCoMo2001, pp.7-12 (2001).
(In Japanese)

[11] Muneyuki Aoki, Jin Nakazawa, and Hideyuki
Tokuda: Building an Autonomous Information
Appliance Control Mechanism, IPSJ, Information
Appliance Computing Research Group 1st Workshop,
(2001). (In Japanese)

[12] T. Okoshi, S. Wakayama, Y. Sugita, S.Aoki, T.
Iwamato, J.Nakazawa, T. Nagata, D. Furukusa, M.
Iwai, A. Kusumoto, N. Harashima, J.Yura, N. Nishio ,
Y. Tobe, Y. Ikeda and H. Tokuda, ``Smart Space
Laboratory Project: Toward the Next Generation
Computing Environment'', in Proceeding of IEEE
Third Workshop on Networked
Appliances(IWNA2001),(2001).

[13] Yasuo Tan: Home Network Using Installed Home
Electric Appliances, IPSJ, Information Appliance
Computing Research Group 1st Workshop, (2001).(In
Japanese)

[14] Danny B. Lange, Mitsuru Ohshima, Programming
and Deploying Java Mobile Agents with Aglets,
Addison Wesley(1998).

[15] Cogma Project Web Page:
http://www.cogma.org/

