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ABSTRACT
There are many inertial sensor based indoor localization
methods for smartphone, for example, SINS and PDR. How-
ever, most of the MEMS sensors of smartphones are not
precise enough for these methods. We proposed end-to-end
walking speed estimation method using deep learning to
perform robustwalking speed estimationwith a low-precision
sensor. Currently, we use the input data with a fixed format
of 200 samples at 100Hz. However, the sampling rate and se-
quence length should be changed appropriately depending
on the required accuracy and terminal performance. They
are critical factors when using ourmethod for a long time on
a terminal because continuous processing of a large amount
of data leads to shorter battery life. In this paper, we evalu-
ate the accuracy of the estimated speed by ourmethodwhen
changing the sampling rate and sequence length. As a result,
using 5 patterns of combinations, the estimation accuracy
hardly changed.
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1 INTRODUCTION
Most of SINS(Strapdown Inertial Navigation System) use ac-
celerameter and gyrocope snsor. These senor is necessarily
to be high precision. SINS estimates the position by dou-
ble integration of acceleration and the attitude by integra-
tion of angular rate [21, 22]. PDR(Pedestrian Dead Reckon-
ing) is one of the promising technology for indoor local-
ization. Most of the current PDR techniques can be catego-
rized as the strapdown algorithm and the step-and-heading
algorithm[5, 9, 20]. The strapdown algorithms require high
precision sensor devices to accurately estimate position. These
methods require high precision sensor to estimate position
accurately. However,most of the current smartphones equipped
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with MEMS sensors do not have enough precision to esti-
mate position accurately, it causes a time-cumulative drift-
error. On the other hand, the step-and-heading PDR algo-
rithm has the major difficulty in robust estimation of the
step length and the step detection. Step length depends on
several parameters such as a person’s height, walking speed
and type of gait. So, in the conventional method[2, 3, 10, 11,
14], it is difficult to estimate step length without using user-
dependent information. For the step detection, "stamp" with
usual "walk" is very difficult. Therefore, we proposed end-
to-end walking estimation method using deep learning to
overcome these problems. The proposed method can esti-
mate robustly for various data such as the gaits[24].

Currently, we use the fixed input data at 100 Hz and 200
sequence lengths. However, the sampling rate and sequence
length of the data should be changed adaptively depend-
ing on the situation, the required accuracy, and the termi-
nal specification. The data sampling rate and the sequence
length is a critical factor when using our proposed method
on a terminal for a long time because the large data at a high-
frequency sampling rate and the intermittent short length
data consumes a lot of power for processing. On the other
hand, changing the sampling rate and sequence length of
the data have negative aspects, for example, the decreased
accuracy and the delay of the estimated speed. In this paper,
we evaluate the accuracy of estimated speed by a proposed
methodwhen changing the sampling rate and sequence length
of the data. We use the data with a sampling rate of 25, 50,
100 Hz and a sequence length of 50, 100, 200. As a result of
the evaluation using 5 patterns of combinations of sampling
rate and sequence length, the estimation accuracy hardly
changed. The difference in the accuracy among all data is
about 0.5-2.5%.

2 RELATEDWORK
Pedestrian Localization Systems
There is a large amount of study which handles pedestrian
localization systems[5, 9, 20]. One of the successful PDR is
based on ZUPT(Zero Velocity Updates)[25] method which
uses fixed sensors on the foot[6, 12]. But this method can-
not utilize smartphone because it requires to fix the sensors
on the foot. Most of smartphone PDR researches use a step-
and-heading algorithm. For the step detection, Alzantot[2]
utilize finite automaton with peak detection. Also, there are
several PDR competitions[11, 14] which collects several al-
gorithms to evaluate them under the same condition. In ad-
dition, there is a step-length estimation method which uti-
lizes stacked autoencoders[7]. These works challenged to
increase the accuracy of PDR. however, still not achieved
enough accuracy for real-world deployment.

Table 1: Collected dataset

Number of Subjects 9 subjects (20’s male)
Terminal Position Hand, Left/Right Waist Pocket
Type of Gait walk, stamp, skip
Total Routes 112 routes
Average walking time 79.6 sec, SD: 53.1sec
Average route length 51.6m, SD:31.9m

Device
PHAB2 Pro (Android 6.0.1)
Xperia G8342(Android 8.0.0)
Nexus 6 (Android 6.0.1)

Software Google Tango
HASC Logger for Android

Sensor data

Acceleration
Angular rate
GPS
Magnetic
Pressure
WiFi

End-to-end Machine Learning System
Recent advancement of deep learning technology enables
end-to-end machine learning on different domains[13, 17,
23].We obtain various technical hints from these researches.
One of the most famous end-to-end machine learning sys-
tems is "Deep Speech"[8] which enables end-to-end speech
recognition. By utilizing a fully connected layer and
bi-directional Recurrent Neural Network, they enabled learn-
ing from the unaligned transcribed audio dataset. In the in-
door positioning field, there are deep learning based meth-
ods. Chen[4] propose IONet which is neural network frame-
work using inertial sensor data to estimate indoor position.

3 END-TO-ENDWALKING SPEED ESTIMATION
METHOD

We proposed end-to-end walking speed estimation method
using deep learning to overcome the problems of threshold-
based PDR. Our proposed method does not have to estimate
stride and detect step. In our method, we need to collect
acceleration, gyro and correct speed data and train DNN
model using these data. The ground truth is 2D speed data
converted by 3D trajectory of the terminal position form
Google Tango. We employ DualCNN-LSTM network model
shown in Fig. 4 which is the integration of CNN-LSTM and
fusion layer as walking speed estimation model.

Data Collection
End-to-end machine learning of PDR requires ground truth
data of the precise terminal location with sensor inputs. In
this paper, we employ Google Tango enabled smartphone
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(a) Route from side view (b) Route from upper view (c) Participant

Figure 1: Data collection method
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Figure 2: Extracting horizontal speed input for the learning
phase
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Figure 3: The flowchart of speed estimation

(Lenovo PHAB2 Pro) with original location data logger soft-
ware and HASC Logger[15]. Google Tango utilizes vision
tracking called "VSLAM" with sensor fusion technology. By
using Google Tango, we can obtain 3D trajectory of the ter-
minal position. The location measurement error of Google
Tango in our pre-experiment is less than 30cm, and also in
the evaluation literature. So we use Google Tango tracking
data as a ground truth data of the terminal location.We have
collected 112 different routes by 9 subjects who is equipped
with 3 smartphones simultaneously. Subjects walk the route
shown in Fig. 1b clockwise and counterclockwise. Fig. 1c
shows one of the subjects collecting data. As you can see,
Fig. 1 shows we collect data outdoors because we can col-
lect various data such as GPS other than inertial sensor data
to enhance the dataset. In this paper, we do not use the data
other than time and inertial sensor data. In our data collec-
tion, subjects are ordered to perform a different type of gaits
such as fast walk, normal walk, slow walk, stamp and skip.
Details of the collected PDR dataset is shown in Table 1.
Based on the collected data, we have to estimate the pedes-

trian’s speed. In this paper, we focus on two-dimensional
trajectory. However, the speed vector which is calculated
from Tango’s location data cannot be used directly because
Tango exports data which includes 3D data. Therefore, we
applied Karman filter based method[16] to estimate and re-
move data of gravity direction with considering noise
reduction[3]. We calculate 2D moving vector by using grav-
ity direction vector д which is estimated from Karman filter
as following: vh = v − д · v

|д |2
v . Fig. 2 shows the overview of

the process of extracting horizontal speed. Fig 3 shows the
flowchart of speed estimation. Horizontal speed extracted
form 3D position data is used as an argument of the loss
function.
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Figure 4: DualCNN-LSTM network model for End-to-End Walking Speed Estimation (kernel size: 12)
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Figure 5: Sensor data input and estimated speed output of
DualCNN-LSTM

Deep Neural Network
To model the walking speed, we employ CNN-LSTM[18]
which is successfully used for activity recognition and other
temporal signal processing methods. Additionally, we use
the fusion layer to capture short and long term features of
walking activities. Detail of the structure and tensor sizes
of DualCNN-LSTM network is shown in Fig. 4. We utilize

dropout(p=0.5), and ReLU for activation function. For the
learning phase of DualCNN-LSTM,we use horizontal walking-
speed for simplicity.
Fig. 5 shows the data flow of the sensor data input and

the estimated horizontal speed output of DualCNN-LSTM.
We input sequence data into a convolutional layer of the
DualCNN-LSTM network. Inside of the network, short term
feature and long term feature are extracted and combined
into LSTM.We use PyTorch[19] as a deep learning platform.

4 EVALUATION
We evaluate the proposed method with data whose sam-
pling rate is 25, 50, 100 Hz and a sequence length is 50, 100,
200 samples. Optimal model parameters depend on sam-
pling rate and sequence length. Therefore, we perform a
grid search to find the best model for each data. We em-
ploy evaluation metrics as PIEM(Path Independent Evalua-
tion Metrics)[1].
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Table 2: Evaluation Dataset(SR: sampling rate[Hz])

SR
sequence length
200 100 50

100 2sec - -
50 4sec 2sec -
25 8sec - 2sec

Table 3: Hyper Parameter

kernel size 2, 4, 8, 10, 12, 16, 20, 24
batch size 64, 128, 256, 512, 1024
learning rate 0.001, 0.002, 0.003

Table 4: The best hyperparameters

input data batch size learning rate kernel sizeSR sample
100 200 1024 0.002 8
50 200 256 0.002 20
50 100 1024 0.002 8
25 200 64 0.002 4
25 50 1024 0.002 2

Generating Low-frequency Data
Input data consists of 5 patterns shown in Table 2. It is dif-
ficult to collect different sampling rate data accurately be-
cause Android sampling rate is unstable and if we collect 3
differet sampling rates data, we need to have 9 terminals(3
each for hand, light/left waist pocket) at the same time. There-
fore, we resample the collected data at 100, 50, 25 Hz and
mold into 200, 100, 50 sequence length. The processed data
can be divided into 2 types. The one corresponds to sequence
data fixed at 200 samples, and the other corresponds to se-
quence data fixed at 2 seconds which is calculated as follow-

ing: t (sec) = SL

SR
(SL : sequence lenдth, SR : samplinд rate).

Hyperprameter
Optimal model parameters depend on sampling rate and se-
quence length. It is necessary to change the kernel size of the
CNN layer because the time series features of the input data
depending on the sampling rate and sequence length. The
batch size and learning rate also should be changed because
these parameters is important when training model. The
candidates of hyperparameters are shown in table 3. The
best hyperparameter is the one when the evaluation met-
ric AMDE(Average moving distance error; described later)
is the smallest. The result of the best parameters is shown
in table 4.

Table 5: Evaluation with dataset fixed at 200 samples (SR:
sampling rate[Hz])

SR[Hz] AMDE[m] MDEM[%] MDES[%]
100 5.79 8.74 5.96
50 5.34 9.92 5.05
25 6.72 11.14 5.35

Table 6: Evaluation with dataset fixed at 2 sec (SR: sampling
rate[Hz])

SR[Hz] AMDE[m] MDEM[%] MDES[%]
100 5.79 8.74 5.96
50 6.13 11.12 5.64
25 6.34 11.02 6.15

Evaluation with dataset
We first use our PDR dataset for evaluation. We divide the
9 subjects PDR dataset into 7 subjects for learning, and 1
subject for validation, 1 subject for test, which results in 265
learning files and 45 test files. For the evaluation metrics,
we employ the followingmetrics called PIEM(Path Indepen-
dent Evaluation Metrics)[1]. Then we obtain the error rate
from the slope of the line regressed by the least square esti-
mate method.
(1) Average moving distance error (AMDE)
(2) Moving distance error rate for each meter (MDEM)
(3) Moving distance error rate for each second (MDES)
For AMDE, we calculate total distance error by using es-

timated walking speed and elapsed time. For MDEM and
MDES, we first create a scatter plot from moving distance
error and ground truth distance, or elapsed time. The smaller
MDEM is, the smaller the estimation error in long distances
movement. On the other hand, the smaller MDES is, the
smaller the estimation error in long time movement.

Result of the evaluation with dataset fixed at 200 samples
is shown in Table 5. Evaluation metrics shows the difference
of the accuracy among all sampling rates is about 1-2.5%
in MDEM and MDES and the input data which gives the
best evaluation by each evaluation metric is different. Fig.
6 shows the speed estimation results of 100, 50, 25Hz data.
This shows that as the sampling rate decreases, the delay
of estimated speed increases, and estimated speed becomes
smoother. Result of the evaluation with dataset fixed at 2 sec
is shown in Table 6. EvaluationMetrics shows the difference
of the accuracy among all sampling rates is about 0.5-2.5%
in MDEM and MDES and the input data which gives the
best evaluation by each evaluation metric is different. Fig. 7
is examples of the speed estimation results of 100, 50, 25Hz
data. The waveform of 25 Hz is more undulating than the
other data.
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Figure 6: Speed estimation by input data fixed at 200 samples

Figure 7: Speed estimation by input data fixed at 2 sec

Discussion
At first, we estimate that dropping sampling rate cause drop-
ping accuracy of speed estimation. However, the result(table
5, 6) shows that there is only few difference in estimation ac-
curacy among sampling rates(100, 50, 25 Hz). Fig. 8 shows
the acceleration during walking resampled to 100 Hz, 50 Hz,
and 25Hz. Dropping the sampling rate to 25Hz does not lose
waveform features. Therefore, it is assumed that the DNN
can capture the features of acceleration regardless of sam-
pling rates(100, 50, 25Hz).

In this evaluation, we can comfirm the interesting eval-
uation results between 100Hz and 50Hz. Table 5, 6 show 2
common features:

• In 100 Hz, MDEM is smaller than in 50 Hz
• In 50 Hz, MDES is smaller than in 100 Hz

Small MDEM and large MDES means that the accuracy of
estimated speed in fastmovement is high. On the other hand,
large MDEM and small MDES means that the accuracy of
estimated speed in slow movement is high[24]. This results
means that:

• If we use 100 Hz data, we can estimate speed in fast
movement like a skipping more accurately than we
use 50 Hz data

(a) 100 Hz

(b) 50 Hz

(c) 25 Hz

Figure 8: Resampled acceleration

• If we use 50 Hz data, we can estimate speed in slow
movement like a stampping more accurately than we
use 100 Hz data

The difference in sampling rates affects the accuracy in es-
timated speed depending on gaits.
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5 CONCLUSION
In this paper, we evaluated the accuarcy of estimated speed
using deep learning when changing the sampling rate and
sequence length of the data. The estimation accuracy hardly
changed at sampling rates of 100 Hz, 50 Hz and 25 Hz and
200, 100, 50 sequence length. It turned out that dropping the
sampling (to 25 Hz) rate hardly affect the accuracy of speed
estimation because data around 25Hz do not lose the feature
of the accelerationwaveform, and the difference in sampling
rates affects the accuracy in estimated speed depending on
gaits.

In this evaluation, there is a difference in the evaluation
results among all input data. However, it is difficult to prove
that the result is general because the dataset we use is too
small to prove generality completely. Therefore, we need to
collect extended dataset(various gaits, more subjects).
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