
Gait-Robust Heading Estimation Using Horizontal
Acceleration for Smartphone-based PDR
Kazuma Kano1, Takuto Yoshida1, Shin Katayama1, Kenta Urano1, Takuro Yonezawa1

and Nobuo Kawaguchi1

1Graduate School of Engineering, Nagoya University, Nagoya, Japan

Abstract
This study tackles heading estimation for Pedestrian Dead Reckoning (PDR) with smartphones. In dealing
with changes in the holding posture of smartphones, it works to consider the relationship between sensor
orientation and heading. However, the existing methods lack robustness to various gaits, such as sideways
and backward walking. Therefore, we propose a novel method considering various spatiotemporal
features of horizontal acceleration with deep learning. The proposed method calculates horizontal
acceleration in the global coordinate system from measured acceleration, gravitational acceleration,
and rotation vector. Then, it inputs the horizontal acceleration over a certain period into a deep neural
network model and predicts the unit vector directed to the mean heading during that period. We created
a dataset covering multiple gaits and evaluated the method using four models: Convolutional Neural
Network (CNN), Bidirectional Long Short-Term Memory (BiLSTM), DualCNN-LSTM, and DualCNN-
Transformer. Consequently, we found that the proposed method was more robust to gaits than the
existing methods, with the DualCNN-LSTM and DualCNN-Transformer models achieving the highest
accuracy.

Keywords
dataset, deep learning, indoor localizaton, indoor positioning, pedestrian dead reckoning

1. Introduction

Pedestrian Dead Reckoning (PDR) is a positioning technology available indoors and outdoors.
It estimates relative trajectory from the start based on measurement data from sensors carried
by the target, such as inertial and magnetic sensors. PDR offers advantages such as low
power consumption, no need for infrastructure, and frequent estimation, holding promise for
application to the positioning of smartphone users. Most PDR methods can be classified into
two types: those that estimate 3D trajectories by second-order integrating acceleration and
those that estimate 2D trajectories by separately estimating walking speeds and headings[1].
The latter type is commonly used due to poor measurement accuracy when utilizing Micro
Electro Mechanical Systems (MEMS) sensors embedded in smartphones.

Proceedings of the Work-in-Progress Papers at the 13th International Conference on Indoor Positioning and Indoor
Navigation (IPIN-WiP 2023), September 25–28, 2023, Nuremberg, Germany
$ kazuma@ucl.nuee.nagoya-u.ac.jp (K. Kano); takuto@ucl.nuee.nagoya-u.ac.jp (T. Yoshida);
shinsan@ucl.nuee.nagoya-u.ac.jp (S. Katayama); urano@nagoya-u.jp (K. Urano); takuro@nagoya-u.jp
(T. Yonezawa); kawaguti@nagoya-u.jp (N. Kawaguchi)
� 0000-0002-7514-1655 (K. Kano)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:kazuma@ucl.nuee.nagoya-u.ac.jp
mailto:takuto@ucl.nuee.nagoya-u.ac.jp
mailto:shinsan@ucl.nuee.nagoya-u.ac.jp
mailto:urano@nagoya-u.jp
mailto:takuro@nagoya-u.jp
mailto:kawaguti@nagoya-u.jp
https://orcid.org/0000-0002-7514-1655
https://creativecommons.org/licenses/by/4.0
https://ceur-ws.org
https://ceur-ws.org

Estimate headings with deep learning

Calculate horizontal acceleration in global coordinate system

Measure acceleration, gravitational acceleration, and rotation vector

DualCNN-LSTM

Horizontal acceleration
in global coordinate system

over a certain period

Unit vector
directed to mean heading

CNN

BiLSTM

DualCNN-Transformer

Figure 1: Overview of proposed method.

Walking speed estimation methods include combining step detection and stride estimation[2,
3] and directly computing walking speeds[4, 5]. These methods have attained adequately high
accuracy. On the other hand, heading estimation methods are divided into just regarding sensor
rotations around the vertical axis as the heading changes[6] and considering the relationship
between the sensor orientations and actual headings. The latter methods can deal with changes
in the holding posture of smartphones during positioning. However, the existing methods still
have problems, such as a lack of robustness against gait differences.

Therefore, we propose a data-driven approach to estimate headings based on horizontal
acceleration in the Global Coordinate System (GCS). We aim to improve gait robustness by
considering various spatiotemporal features with deep learning. Fig. 1 illustrates an overview
of the proposed method. First, we calculate horizontal acceleration in GCS from acceleration,
gravitational acceleration, and rotation vector measured by a smartphone. Then, we input
the horizontal acceleration in GCS over a certain period into a deep neural network model to
predict the unit vector directed to the mean heading during that period. This study explores
four models: Convolutional Neural Network (CNN), Bidirectional Long Short-Term Memory
(BiLSTM), DualCNN-LSTM, and DualCNN-Transformer. We created a dataset supporting
multiple gaits and evaluated the estimation accuracy. The result showed that the proposed
method improved gait robustness compared to the existing and especially achieved the highest
accuracy when using the DualCNN-LSTM and DualCNN-Transformer models.

2. Related Work

2.1. Heading Estimation Methods Based on Horizontal Acceleration in Global
Coordinate System

Horizontal acceleration tends to spread along heading directions because people repeatedly
accelerate and decelerate in walking. Deng et al. proposed Rotation Matrix and Principal
Component Analysis (RMPCA), which estimates heading as the first principal component of
horizontal acceleration obtained via PCA[7]. Ban et al. estimated heading as the mean vector
of horizontal acceleration while the magnitude of acceleration without gravity component
exceeded a certain threshold[8]. For convenience, we refer to this method as Horizontal
Acceleration Mean (HAM) method. Both methods preprocess acceleration by transforming it
into GCS with the origin at the sensor’s position. Here, GCS refers to a right-handed coordinate
system defined as follows:

• X-axis is horizontal and points east at the origin.
• Y-axis is horizontal and points north at the origin.
• Z-axis is vertical and points upward at the origin.

Transforming into GCS in advance helps identify the problems at sensor orientation estimation
and heading estimation. It also enables independent heading estimation at each time step,
avoiding the accumulation of heading errors even during prolonged positioning. However,
these methods lack gait robustness as they do not account for temporal information or other
spatial features.

2.2. Pedestrian Dead Reckoning Methods Using Deep Learning

Deep learning, which can automatically choose and consider various features, seems effective
in improving gait robustness. Chen et al. proposed IONet, which uses BiLSTM to estimate
trajectories and demonstrated improved positioning accuracy compared to conventional PDR
methods[9]. IONet trains the model to output moved distances and heading displacements
from acceleration and angular velocity in Sensor Coordinate System (SCS). Then, it sequentially
integrates the displacements to estimate the headings. Chen et al. also attempted to reduce the
computational complexity by applying WaveNet[10]. Kawaguchi et al. proposed DualCNN-
LSTM as a model for walking speed estimation, designed to handle various gaits such as fast
walking and stepping in place[4, 5]. DualCNN-LSTM has two paths consisting of convolutional
layers with different kernel sizes connected in parallel to an LSTM layer. It is presumed to
accommodate various gaits by extracting a wide range of features from short-term to long-term.
Although many studies have applied deep learning to PDR, they have not sufficiently discussed
the gait robustness of heading estimation. In addition, previous studies usually input sensor
measurement data into models before the coordinate transformation, making it impossible to
separate errors in sensor orientation estimation and heading estimation.

2.3. Activity Recognition Methods Using Deep Learning

Human Activity Recognition (HAR) is another representative research field involving sensor
measurement data analysis. Ha et al. used CNN to recognize actions in car assembly lines and
daily life based on acceleration measured by multiple sensors and multimodal data[11]. Zhao et
al. applied BiLSTM and improved classification accuracy compared with plain LSTM[12]. Shavit
et al. applied Transformer, a state-of-the-art model in research fields such as natural language
processing and computer vision, to HAR and improved classification accuracy compared to
simple CNN[13].

3. Methodology

We use deep neural network models to estimate headings from horizontal acceleration in
GCS. Fig. 2 describes the training and prediction processes of the proposed method. In the
offline phase, we train models following the solid blue arrows. First, measure acceleration,
gravitational acceleration, and rotation vector with a smartphone while measuring the trajectory
with surveying equipment. Next, align their timestamps and resample at 100 (Hz). Then,
calculate horizontal acceleration in GCS and denoise them before inputting to the model. Finally,
train the model by backpropagating the losses between the estimated headings and ground
truth computed from the actual trajectory. In the online phase, we predict headings following
the dashed orange arrows.

3.1. Deriviation of Horizontal Acceleration

Horizontal acceleration in GCS is calculated from acceleration and gravitational acceleration in
SCS and rotation vector. Firstly, project the acceleration 𝑎𝑠 onto the gravitational acceleration
𝑔𝑠 to obtain the vertical component of acceleration 𝑎𝑠

𝑣 . Subtracting 𝑎𝑠
𝑣 from 𝑎𝑠 gives horizontal

acceleration 𝑎𝑠
ℎ. The superscript ’𝑠’ stands for SCS.

𝑎𝑠
𝑣 =

(︂
𝑎𝑠 · 𝑔𝑠

𝑔𝑠 · 𝑔𝑠

)︂
𝑔𝑠 (1)

𝑎𝑠
ℎ = 𝑎𝑠 − 𝑎𝑠

𝑣 (2)

Secondly, transform the horizontal acceleration 𝑎𝑠
ℎ into GCS using the rotation vector. The

rotation vector corresponds to the smartphone orientations in GCS with the origin at the
smartphone’s position. Applying the rotation operation 𝑓 represented by the rotation vector to
the horizontal acceleration 𝑎𝑠

ℎ in SCS yields horizontal acceleration 𝑎𝑔
ℎ in GCS. The superscript

’𝑔’ stands for GCS.
𝑎𝑔
ℎ = 𝑓(𝑎𝑠

ℎ) (3)

Finally, apply the Gaussian filter with a standard deviation 𝜎 = 1.1 to remove noises. The
filtered horizontal acceleration is calculated as the convolution of the Gaussian kernel and
original horizontal acceleration 𝑎𝑔

ℎ along the time dimension. We obtain each component of

Smartphone Surveying instrument

Acceleration
in SCS

Time synchronization

Resampling

Coordinate transformation

Horizontal acceleration
calculation

Horizontal
acceleration

in SCS

Denoising

Deep neural network model

Heading calculation

Estimated
heading
in GCS

True
heading
in GCS

Loss calculation

Loss

Training Prediction

Position data
for ground truth

Sensor measurement data
for estimation

Gravitational
acceleration

in SCS

Rotation
vector

Trajectory
in GCS

Horizontal
acceleration

in GCS

Figure 2: Flows of training models and predicting headings.

the filtered horizontal acceleration at time 𝑡

�̂�𝑔,𝑡𝑥 =
1√
2𝜋𝜎

𝑟∑︁
𝑖=−𝑟

𝑎𝑔,𝑡−𝑖
𝑥 exp

(︂
− 𝑖2

2𝜎2

)︂
(4)

�̂�𝑔,𝑡𝑦 =
1√
2𝜋𝜎

𝑟∑︁
𝑖=−𝑟

𝑎𝑔,𝑡−𝑖
𝑦 exp

(︂
− 𝑖2

2𝜎2

)︂
(5)

where 𝑎𝑔,𝑡−𝑖
𝑥 and 𝑎𝑔,𝑡−𝑖

𝑦 denote each component of the original horizontal acceleration at time
𝑡− 𝑖. We round the kernel radius 𝑟 to 3 because the exponential term is negligibly small.

Conv-1 (ch , ks)

BatchNorm

ReLU

BatchNorm

ReLU

Conv-2 (ch , ks)

Conv-3 (ch , ks)

FC-1 (ch)

ReLU

Norm

BiLSTM (hs)

Dropout (p)

ReLU

Input ()

Output ()

BatchNorm

ReLU

FC-2 (ch)

ReLU

ReLU

ReLU

ReLU

ReLU

ReLU

Norm

FC-2 (ch)

BatchNorm

LSTM (hs)

(b) BiLSTM(a) CNN (c) DualCNN-LSTM

Input () Input ()

Output () Output ()

FC (ch)

BiLSTM (hs)

Conv-s (ch , ks)

Conv-s (ch , ks)

Conv-s (ch , ks)

Conv-l (ch , ks)

Conv-l (ch , ks)

Dropout (p)

Dropout (p)

Dropout (p)

Dropout (p)

Dropout (p)

FC-1 (ch)

GeLU

Conv-s (ch ，ks)

Conv-s (ch ，ks)

GeLU

Conv-s (ch ，ks)

GeLU

Conv-l (ch ，ks)

GeLU

Conv-l (ch ，ks)

GeLU

FC-3 (ch)

Dropout (p)

Output ()

FC-4 (ch)

GeLU

TransformerEncoderLayer

Input ()

(d) DualCNN-Transformer

TransformerEncoderLayer

TransformerEncoderLayer

Average

Positional
encoding

Attention (d ，nhead)

LayerNorm

FC-1 (ch)

GeLU

Dropout (p)

FC-2 (ch)

LayerNorm

Dropout (p)

Dropout (p)

Figure 3: Network architectures.

3.2. Heading Estimation Model

3.2.1. Input and Output

The model receives the horizontal acceleration in GCS over a certain period and outputs the unit
vector directed to the mean heading during that period. Note that the trajectories measured by
surveying equipment and the headings computed from them may contain errors. We intend to
alleviate their influence by taking the average. Additionally, estimating the heading as a vector
rather than an angle helps eliminate discontinuity at the ±180 (deg) boundary and stabilize
the learning process[14]. The x and y components of the vector correspond to the cosine and
sine of the angle, respectively. In this paper, we empirically set the input length to four seconds.
Since resampled at 100 (Hz), the input size is 400× 2, and the output size is 1× 2.

3.2.2. Network Architecture

This study considers four models: CNN, BiLSTM, DualCNN-LSTM, and DualCNN-Transformer.
Fig. 3 displays the model architectures. The CNN model has three stacked convolutional
layers, extracting short-term features at the shallow layers and long-term at the deep. The
BiLSTM model extracts features across the entire data in the BiLSTM layers. The concatenated
forward and backward hidden states of the second BiLSTM layer are fed into the fully connected
layer. The DualCNN-LSTM model extracts various-timescale features in two different-sized
convolutional paths and captures how those features lie throughout the data in the LSTM layer.
The inputs of two paths are shared, and their outputs are concatenated and passed to the LSTM
layer. The DualCNN-Transformer model extracts features in two different-sized convolutional
paths and considers the relationship among them by self-attention. The concatenated outputs
of two paths with learnable positional encoding added are passed to the Transformer encoder.
The output of the Transformer encoder is averaged over the time dimension and then fed into

Table 1
Hyperparameters of CNN model

Conv-1

out channels 32, 64, 128
kernel size 3, 7, 13
stride 1

padding 0

Conv-2

out channels 32, 64, 128
kernel size 3, 7, 13
stride 1

padding 0

Conv-3

out channels 32, 64, 128
kernel size 3, 7, 13
stride 1

padding 0

FC-1 out channels 32, 64, 128

Table 2
Hyperparameters of BiLSTM model

BiLSTM
hidden size 32, 64, 128
num layers 2, 3, 4
dropout 0.125, 0.25, 0.5

Table 3
Hyperparameters of DualCNN-LSTM model

Conv-s

out channels 32, 64, 128
kernel size 3, 5, 9 *

stride 1
padding 0
dropout 0.125, 0.25, 0.5 *

Conv-l

out channels 32, 64, 128
kernel size 5, 9, 17 *

stride 1
padding 0
dropout 0.125, 0.25, 0.5 *

LSTM hidden size 32, 64, 128

FC-1 out channels 32, 64, 128

0 20 40 60 80 100
Epoch

0.0

0.2

0.4

0.6

0.8

1.0
Lo

ss
CNN training
CNN validation
BiLSTM training
BiLSTM validation
DualCNN-LSTM training
DualCNN-LSTM validation
DualCNN-Transformer training
DualCNN-Transformer validation

Figure 4
Loss transition during training.

the fully connected layer. We normalize the final output to have a norm of 1 for the CNN
and DualCNN-LSTM models. On the other hand, we do not normalize for the BiLSTM and
DualCNN-Transformer models because it hinders their learning processes.

3.2.3. Training and Hyperparameters

We perform estimation and update the weights at 10 (Hz) during training. In other words, the
window to slice input data slides by ten samples at a time. We employ Mean Squared Error
(MSE) as a loss function and Adam with a learning rate of 0.001 as an optimizer. The batch
size is set to 512. We train models for 100 epochs and use the weights at the epoch with the
smallest validation loss. We determined the hyperparameters by grid search from the candidate
values listed in Tables 1, 2, 3, and 4. Parameters written in bold indicate what resulted in the
smallest validation loss. Note that we constrained some parameter combinations due to the
large search space. For the DualCNN-LSTM model, the kernel sizes 𝑘𝑠𝑐𝑠 and 𝑘𝑠𝑐𝑙, the dropout

Table 4
Hyperparameters of DualCNN-Transformer model

Conv-s

out channels 16, 32, 64 *

kernel size 3, 5, 9 *

stride 1
padding 0

Conv-l

out channels 16, 32, 64 *

kernel size 5, 9, 17 *

stride 1
padding 0

Transformer encoder

num layers 1, 2, 3
Attention dim 32, 64, 128 *

Attention num heads 4
Feed-Forward dim 32, 64, 128

dropout 0.1

FC-3
out channels 8, 16, 32 *

dropout 0.1

proportions 𝑝𝑐𝑠 and 𝑝𝑐𝑙, for Conv-s and Conv-l, respectively, satisfy the following relationship:

2𝑘𝑠𝑐𝑠 − 1 = 𝑘𝑠𝑐𝑙 (6)

𝑝𝑐𝑠 = 𝑝𝑐𝑙 (7)

For the DualCNN-Transformer model as well, the numbers of out channels 𝑐ℎ𝑐𝑠 of Conv-s and
𝑐ℎ𝑐𝑙 of Conv-l, the dimension 𝑑𝑎𝑡 of Attention, the number of out channels 𝑐ℎ𝑓𝑐 of FC-3, and
the kernel sizes 𝑘𝑠𝑐𝑠 of Conv-s and 𝑘𝑠𝑐𝑙 of Conv-l satisfy the following relationship:

2𝑐ℎ𝑐𝑠 = 2𝑐ℎ𝑐𝑙 = 𝑑𝑎𝑡 = 4𝑐ℎ𝑓𝑐 (8)

2𝑘𝑠𝑐𝑠 − 1 = 𝑘𝑠𝑐𝑙 (9)

Fig. 5 shows the loss transition with the best hyperparameters.

4. Evaluation

4.1. Dataset

We created a dataset supporting multiple gaits for evaluation. We collected acceleration, gravita-
tional acceleration, rotation vector, angular velocity, and geomagnetic field with a smartphone
(Google Pixel 4, Android 10). These sensor measurement data can be retrieved via Android
Sensor Framework API and are recorded in SCS. The gravitational acceleration and rotation
vector are internally computed from the acceleration, angular velocity, and geomagnetic field.
We simultaneously measured 3D position data in GCS using a laser surveying instrument
(TOPCON GT-1205). We instructed the subjects to hold the smartphone in front of their chest
and walk along markers we placed beforehand.

-30 -20 -10 0
Position (m)

-20

-10

0

10
Po

sit
io

n
(m

)

(a) Rectangle

-30 -20 -10 0
Position (m)

-20

-10

0

10

(b) Hourglass

-5 0 5 10
Position (m)

0

5

10

15

(c) Straight line

Figure 5: Instances of walking patterns.

The subjects are eight males aged 21 to 23 years. The gaits consist of forwards, right sideways,
left sideways, and backwards. The walking courses have three shapes: rectangle, hourglass, and
straight line. Fig. 5 exhibits the instances of trajectories and walking postures. Their colors
indicate the temporal transition, meaning the subjects moved from purple to yellow. The arrows
represent the smartphone orientations at each time computed from the rotation vector. The side
lengths of the rectangular and hourglass-shaped courses range from 20 to 31 (m). The subjects
circulate the route by a single gait in the rectangular and hourglass-shaped courses. These data
include cornering movements (i.e., heading changes during walking). On the other hand, the
subjects change their gaits every 5 (m) and change their headings by 180 (deg) every 15 (m) in
the straight-line courses. These data include gait changes and heading changes by 180 (deg).
Total walking distance and recording time are 8543 (m) and 120 minutes, respectively.

4.2. Experimental Conditions

We evaluate the heading estimation accuracy of the proposed method for each model. We also
evaluate and compare RMPCA[7] and HAM[8], based on horizontal acceleration in GCS, and
IONet[9], based on deep learning. First of all, we split the dataset into three subsets for training,
validation, and testing. However, we allocated all data of the hourglass-shaped courses for
training due to limited data available. Then, we conducted grid search using the training and
validation subsets to determine the hyperparameters. Finally, we performed estimation at 100
(Hz) on the testing subset and evaluated the results.

The proposed method trains the model to output the mean heading over a certain period.
However, we treat it as the estimated heading at the central time during evaluation. We used
our implementation of IONet based on the original paper because it is not publicly available.
IONet sequentially calculates headings by integrating estimated heading displacements, so we
provided the ground truth as the initial heading. The evaluation metrics are MSE of heading
cosine and sine. The MSE value 𝑒 takes a minimum of 0 when the estimated headings �̂�

𝑖
and

the ground truth 𝜃𝑖 coincide for all time 1 ≤ 𝑖 ≤ 𝑁 and a maximum of 2 when they differ by

Table 5
Mean squared errors of heading cosine and sine

Rectangle
Straight line All

Forwards Sideways Backwards

Proposed

CNN 0.08 0.21 0.32 0.09 0.11
BiLSTM 0.24 0.14 0.34 0.09 0.12

DualCNN-LSTM 0.21 0.10 0.17 0.07 0.09
DualCNN-Transformer 0.15 0.12 0.14 0.08 0.09

RMPCA 0.18 0.93 1.56 0.67 0.69
HAM 0.24 0.23 1.52 0.33 0.37
IONet 1.05 0.82 1.30 1.06 1.04

180 (deg).

𝑒 =
1

2𝑁

𝑁∑︁
𝑖=1

(︂(︁
cos(�̂�

𝑖
)− cos(𝜃𝑖)

)︁2
+

(︁
sin(�̂�

𝑖
)− sin(𝜃𝑖)

)︁2
)︂

(10)

4.3. Results and Discussions

Table 5 summarizes MSE for each course shape and gait. Fig. 6 presents the estimated headings
for some test data by the proposed method on the left and the comparative methods on the
right. Fig. 7 shows the corresponding trajectories based on the actual walking speeds computed
from the ground truth trajectories. To begin with, we discuss the effects of model structure on
estimation accuracy and gait robustness on the basis of the evaluation results of the proposed
method. The CNN model was very accurate for forward walking but not stable for other
gaits. It seems overly optimized for forwards, the most common gait in the dataset. Besides,
feature timescales should differ depending on gaits, and the present CNN model may not
adequately perceive differences in gaits. The receptive field of the third convolutional layer is
37, indicating that this model estimates headings by combining approximately 0.4 seconds of
features. Extending the receptive field by increasing the kernel strides or the number of layers
may improve accuracy for various gaits. The BiLSTM model could estimate heading correctly to
some extent for all gaits but had lower accuracy compared to other models. A possible reason is
that this model cannot sufficiently grasp local features due to the absence of feature extraction
at convolutional layers.

The DualCNN-LSTM model achieved high accuracy overall and estimated headings robustly
for every gait. It seems to successfully consider a wide range of features through the different-
sized convolutional layers and the LSTM layer. The DualCNN-Transformer model achieved
high accuracy as well. Incidentally, the quantity of its weight parameters is less than half of
that in the DualCNN-LSTM model due to the lower number of channels in convolutional layers.
From these observations, we have concluded that extracting local features, in which models like
CNN excel, is crucial for boosting estimation accuracy. At the same time, extracting long-term
features, for which models like LSTM and Transformer are suitable, improves robustness to

0 10 20 30 40 50 60
Time (s)

-180

0

180

He
ad

in
g

(d
eg

)

(a) Rectangle forwards

0 10 20 30 40 50 60
Time (s)

0 10 20 30 40 50 60
Time (s)

-180

0

180

He
ad

in
g

(d
eg

)

(b) Rectangle sideways

0 10 20 30 40 50 60
Time (s)

0 10 20 30 40 50 60
Time (s)

-180

0

180

He
ad

in
g

(d
eg

)

(c) Rectangle backwards

0 10 20 30 40 50 60
Time (s)

0 5 10 15 20 25 30
Time (s)

-180

0

180

He
ad

in
g

(d
eg

)

(d) Straight line

0 5 10 15 20 25 30
Time (s)

CNN
DualCNN-LSTM

BiLSTM
DualCNN-Transformer

RMPCA
IONet

HAM
Ground truth

Figure 6: Instances of estimated headings.

different gaits.
Next, we examine each comparative method. RMPCA was satisfactory accurate for forward

walking but experienced a significant decrease in accuracy for sideways and backwards. It tends
to cause errors of approximately ±90 (deg) for sideways and ±180 (deg) for backwards, as

-40 -20 0 20
Position (m)

-40

-20

0

Po
sit

io
n

(m
)

(a) Rectangle forwards

-40 -20 0
Position (m)

-20

0

20

(b) Rectangle sideways

-60 -40 -20 0 20
Position (m)

-40

-20

0

20

Po
sit

io
n

(m
)

(c) Rectangle backwards

-10 0 10 20
Position (m)

0

10

20

(d) Straight line

CNN
DualCNN-LSTM

BiLSTM
DualCNN-Transformer

RMPCA
IONet

HAM
Ground truth

Figure 7: Instances of estimated trajectories.

seen in Fig. 6(b)(c). The principal component of horizontal acceleration is seemingly associated
with the anterior-posterior direction of the body rather than the heading direction. HAM lost
accuracy in backward walking. Additionally, focusing on the cornering movements, HAM
occasionally estimated them as the opposite turns, shown around 15 seconds in Fig. 6(a) and Fig.
7(a). It is presumed that HAM cannot recognize heading changes since it does not consider the
temporal order of input data. IONet precisely tracked headings during the spans with minimal
heading changes, but the errors increased at the cornering movements, as shown in Fig. 6 and
7. This behavior is attributed to its sequentially heading estimation, accumulating errors over
time. The model tends to estimate heading displacements smaller, so increasing the proportion
of data with heading changes may improve accuracy. Moreover, IONet often failed to detect
the heading changes of approximately 180 (deg) on the straight-line courses. This problem
could be solved by training the model to output heading displacements as vectors, similar to
the proposed method.

Through this experiment, we confirmed that the proposed method improved gait robustness
compared to RMPCA and HAM. We also found the DualCNN-LSTM and DualCNN-Transformer
models, which consider features with a wide range of timescales, were especially effective.
Furthermore, we observed the advantages of the proposed method over IONet not only in the
separation of orientation estimation and heading estimation and no need for initial heading but
also suitability for long-duration positioning and robustness to heading changes of 180 (deg).
However, there is room for improvement in estimation accuracy for forward walking, which
was not much different from the existing methods.

5. Summary

This paper focused on heading estimation for PDR with smartphones. The existing methods
have limitations regarding gait robustness and calculation interpretability. Therefore, we pro-
posed an approach that inputs horizontal acceleration in GCS, calculated from acceleration,
gravitational acceleration, and rotation vector, into a deep neural network model to estimate
headings. Additionally, we created a dataset consisting of forward, sideways, and backward
walking to evaluate gait robustness. We prepared four models: CNN, BiLSTM, DualCNN-LSTM,
and DualCNN-Transformer, and evaluated the heading estimation accuracy in comparison with
RMPCA, HAM, and IONet. As a result, the proposed method outperformed in gait robust-
ness, especially when using the DualCNN-LSTM and DualCNN-Transformer models. Further
improvement in estimation accuracy and expansion of the dataset are future challenges.

Acknowledgments

This work is partially supported by JSPS KAKENHI (JP22K18422), NEDO (JPNP23003), NICT
(22609), and TRUSCO Nakayama Corporation.

References

[1] R. Harle, A survey of indoor inertial positioning systems for pedestrians, IEEE Commu-
nications Surveys & Tutorials 15 (2013) 1281–1293. doi:10.1109/SURV.2012.121912.
00075.

[2] M. Alzantot, M. Youssef, Uptime: Ubiquitous pedestrian tracking using mobile phones,
in: 2012 IEEE Wireless Communications and Networking Conference (WCNC), 2012, pp.
3204–3209. doi:10.1109/WCNC.2012.6214359.

[3] I. Klein, O. Asraf, Stepnet-deep learning approaches for step length estimation, IEEE
Access 8 (2020) 85706–85713. doi:10.1109/ACCESS.2020.2993534.

[4] T. Yoshida, J. Nozaki, K. Urano, K. Hiroi, T. Yonezawa, N. Kawaguchi, Gait dependency of
smartphone walking speed estimation using deep learning (poster), in: Proceedings of
the 17th Annual International Conference on Mobile Systems, Applications, and Services,
MobiSys ’19, Association for Computing Machinery, New York, NY, USA, 2019, pp. 641–642.
URL: https://doi.org/10.1145/3307334.3328667. doi:10.1145/3307334.3328667.

http://dx.doi.org/10.1109/SURV.2012.121912.00075
http://dx.doi.org/10.1109/SURV.2012.121912.00075
http://dx.doi.org/10.1109/WCNC.2012.6214359
http://dx.doi.org/10.1109/ACCESS.2020.2993534
https://doi.org/10.1145/3307334.3328667
http://dx.doi.org/10.1145/3307334.3328667

[5] N. Kawaguchi, J. Nozaki, T. Yoshida, K. Hiroi, T. Yonezawa, K. Kaji, End-to-end walk-
ing speed estimation method for smartphone pdr using dualcnn-lstm., in: IPIN (Short
Papers/Work-in-Progress Papers), 2019, pp. 463–470.

[6] W. Kang, Y. Han, Smartpdr: Smartphone-based pedestrian dead reckoning for indoor local-
ization, IEEE Sensors Journal 15 (2015) 2906–2916. doi:10.1109/JSEN.2014.2382568.

[7] Z.-A. Deng, G. Wang, Y. Hu, D. Wu, Heading estimation for indoor pedestrian navigation
using a smartphone in the pocket, Sensors 15 (2015) 21518–21536. URL: https://www.mdpi.
com/1424-8220/15/9/21518. doi:10.3390/s150921518.

[8] R. Ban, K. Kaji, K. Hiroi, N. Kawaguchi, Indoor positioning method integrating pedestrian
dead reckoning with magnetic field and wifi fingerprints, in: 2015 Eighth International
Conference on Mobile Computing and Ubiquitous Networking (ICMU), 2015, pp. 167–172.
doi:10.1109/ICMU.2015.7061061.

[9] C. Chen, X. Lu, A. Markham, N. Trigoni, Ionet: Learning to cure the curse of drift in
inertial odometry, Proceedings of the AAAI Conference on Artificial Intelligence 32 (2018).
URL: https://ojs.aaai.org/index.php/AAAI/article/view/12102. doi:10.1609/aaai.v32i1.
12102.

[10] C. Chen, P. Zhao, C. X. Lu, W. Wang, A. Markham, N. Trigoni, Deep-learning-based
pedestrian inertial navigation: Methods, data set, and on-device inference, IEEE Internet
of Things Journal 7 (2020) 4431–4441. doi:10.1109/JIOT.2020.2966773.

[11] S. Ha, J.-M. Yun, S. Choi, Multi-modal convolutional neural networks for activity recogni-
tion, in: 2015 IEEE International Conference on Systems, Man, and Cybernetics, 2015, pp.
3017–3022. doi:10.1109/SMC.2015.525.

[12] Y. Zhao, R. Yang, G. Chevalier, X. Xu, Z. Zhang, Deep residual bidir-lstm for human activity
recognition using wearable sensors, Mathematical Problems in Engineering 2018 (2018)
7316954.

[13] Y. Shavit, I. Klein, Boosting inertial-based human activity recognition with transformers,
IEEE Access 9 (2021) 53540–53547. doi:10.1109/ACCESS.2021.3070646.

[14] Q. Wang, H. Luo, L. Ye, A. Men, F. Zhao, Y. Huang, C. Ou, Pedestrian heading estimation
based on spatial transformer networks and hierarchical lstm, IEEE Access 7 (2019) 162309–
162322. doi:10.1109/ACCESS.2019.2950728.

http://dx.doi.org/10.1109/JSEN.2014.2382568
https://www.mdpi.com/1424-8220/15/9/21518
https://www.mdpi.com/1424-8220/15/9/21518
http://dx.doi.org/10.3390/s150921518
http://dx.doi.org/10.1109/ICMU.2015.7061061
https://ojs.aaai.org/index.php/AAAI/article/view/12102
http://dx.doi.org/10.1609/aaai.v32i1.12102
http://dx.doi.org/10.1609/aaai.v32i1.12102
http://dx.doi.org/10.1109/JIOT.2020.2966773
http://dx.doi.org/10.1109/SMC.2015.525
http://dx.doi.org/10.1109/ACCESS.2021.3070646
http://dx.doi.org/10.1109/ACCESS.2019.2950728

	1 Introduction
	2 Related Work
	2.1 Heading Estimation Methods Based on Horizontal Acceleration in Global Coordinate System
	2.2 Pedestrian Dead Reckoning Methods Using Deep Learning
	2.3 Activity Recognition Methods Using Deep Learning

	3 Methodology
	3.1 Deriviation of Horizontal Acceleration
	3.2 Heading Estimation Model
	3.2.1 Input and Output
	3.2.2 Network Architecture
	3.2.3 Training and Hyperparameters

	4 Evaluation
	4.1 Dataset
	4.2 Experimental Conditions
	4.3 Results and Discussions

	5 Summary

