回転磁石マーカによるスマートフォンの3次元位置推定手法

渡邊 康祐¹ 廣井 慧² 神山 剛³ 佐野 博之⁴ 塚本 昌克⁴ 片桐 雅二⁴ 池田 大造⁴ 梶 克彦⁵ 河口 信夫²

概要:本研究では動的磁場を発生させる回転磁石マーカを開発し,スマートフォンの3次元位置を推定す る手法を提案する.我々はこれまで,回転磁石マーカによる通過検出や位置推定手法について検討してき た.提案手法では,回転磁石マーカが生み出す磁気をスマートフォンに搭載されている磁気センサで検知 し,回転磁石マーカのモータの角度データと照らし合わせてスマートフォンの詳細な3次元位置を推定す る.まず,回転磁石が3次元極座標に発生させる磁気を検討し,磁気と3次元位置との理論式を構築した. 方位角は磁場のノルムが極大値をとる時のモータの角度データを用いて推定し,仰角は磁気データと仰角 の関係式を求めて推定する.距離は磁場のノルムが回転磁石マーカからの距離に依存することを利用して 推定する.提案手法の推定精度を調べる実験として,回転磁石マーカとスマートフォンの距離を1.0mで固 定し,いくつかの位置で方位角,仰角を推定した結果,方位角は全ての計測位置で平均誤差11°以内,仰角 は全ての計測位置で平均誤差10°以内で推定可能であった.また,回転磁石マーカとスマートフォンの距離 を50cm~4.0m まで50cm 刻みとし,方位角と距離の推定を10回ずつ行った結果,方位角推定は3.0.以内 であれば平均誤差14°以内,距離推定は3.0m以内の距離であれば平均誤差19cm以内の精度で可能で推定 可能であった.提案手法によって,我々のこれまでの手法と比較して,3次元位置推定の実現,推定精度の向 上,推定可能距離の延長に成功した.

A Three-Dimensional Smartphone Positioning Method using Spinning Magnet Marker

KOSUKE WATANABE¹ KEI HIROI² TAKESHI KAMIYAMA³ HIROYUKI SANO⁴ MASAKATSU TSUKAMOTO⁴ MASAJI KATAGIRI⁴ DAIZO IKEDA⁴ KATSUHIKO KAJI⁵ NOBUO KAWAGUCHI²

1. はじめに

近年,スマートフォンの普及に伴い様々な場面で位置情報を用いたサービスが利用できるようになった.例えば, GoogleMaps^{*1}やNAVITIME^{*2}といった目的地までの経路をナビゲートするアプリや,Ingress^{*3}やGeocaching^{*4}といった位置情報を利用したゲームアプリなどがある.これ

1 名古屋大学大学院 工学研究科

- 2 名古屋大学 未来社会創造機構
- ³ NTT ドコモ サービスイノベーション部
- ⁴ NTT ドコモ 先進技術研究所
- 5 愛知工業大学 情報科学部
- *1 GoogleMaps: https://www.google.co.jp/maps
- *2 NAVITIME: https://www.navitime.co.jp/
- *3 Ingress: https://www.ingress.com/
- ^{*4} Geocaching: https://www.geocaching.com/play

らのサービスの多くは GPS(Global Positioning System) を利用しているため、人工衛星からの電波が届きにくい屋 内での利用が困難になるという問題が存在する. 屋内にお ける詳細な位置推定が可能になれば、ショッピングモール などの広い屋内でのナビゲートや、イベント会場における 展示物の周辺での人の動きを把握できるようになると考え られる. そのためには、スマートフォンの3次元位置を数 cm 程度の誤差で推定する手法やスマートフォンの姿勢を 推定する手法が必要である.

現在様々な屋内位置推定手法が研究されている. 例えば, Wi-Fi のアクセスポイントから発せられる電波を用いた 手法 [1][2] や Bluetooth を用いた手法 [3][4], UWB(Ultra Wide Band)を用いた手法 [5], 超音波を用いた手法 [6] な どがある. これらの手法にはそれぞれ長所と短所が存在 する.Wi-Fiのアクセスポイントを用いた手法では10m~ 100m 程度の精度で位置推定が可能だが,数 cm 程度の詳細 な位置情報を必要とする場面では有効ではない.また遮蔽 物が存在すると推定精度に影響が出るといった問題がある. Bluetooth を用いた手法では数 m~数 10m 程度の精度で 位置推定が可能だが,詳細な位置推定が必要な条件では有 効ではないと考えられる.UWBを用いた手法では数 cm~ 1m 程度の精度で位置推定が可能であるが,位置推定を行う ために専用の端末が必要となる.超音波を用いた手法では 数 m 以内の距離であれば数 cm~数 10cm 程度の精度で位 置推定が可能であるが,超音波を発するスピーカとスマー トフォンとの間に遮蔽物が存在すると推定精度に大きく影 響するといった問題がある.

我々はこれまで磁気に焦点を当て, 屋内位置推定手法の 研究を行ってきた. スマートフォンには磁気センサが搭載 されており, 数 μT 以下の磁気を検知可能である. この磁 気センサは地磁気を利用した電子コンパスなどのアプリ に使われている. 磁気を用いるメリットとして, Wi-Fi や Bluetooth, UWB などの電波を用いた手法と異なり, 物質 を構成する原子による散乱が起きにくく, さらに電子の励 起エネルギーとして吸収されにくいため遮蔽物の影響を受 けにくい点などが挙げられる.

我々は回転磁石マーカと呼ばれる装置を用いて振動す る動的磁場を意図的に発生させ、その磁気を用いて通過検 出[8]やスマートフォンの位置推定を行う手法[9]を検討し た.動的磁場を用いることのメリットとして、地磁気などの 環境磁気が存在する状況下でも信号処理によって動的磁場 の判別が可能なことが挙げられる.

本研究では回転磁石マーカを用いたスマートフォンの3 次元位置推定について提案する.表1に我々のこれまでの 研究(参考文献 [8][9])との比較を示す.まず,磁気と3次 元位置との関係を明らかにするため,回転する磁石が発生 させる磁気を理論的に考察した.次に,推定精度を高めるた めステッピングモータを用いて磁石を回転させる回転磁石 マーカを開発した.これによって、以前の研究 [9] では回転 磁石マーカによる方位角推定が 45° ずつ 8 方向でしかでき なかったが, モータのステップ角度である 3.6° ずつ 100 方 向での方位角推定が可能になり、モータの角度データを位 置推定に利用することで、推定精度の向上を実現した. さ らに、これまでは2次元的な位置推定しかできなかったが、 仰角を推定する手法を検討したことでスマートフォンの3 次元的な位置推定が可能になった。そして、計測した磁気 データにノイズを軽減する処理を加えたことで推定精度が 向上し、推定可能な距離を 2.0m~3.0m 延長することにも 成功した.

本論文の構成を以下に示す.まず2章で屋内位置推定の 関連研究について述べる.次に,3章で回転磁石マーカを用 いた3次元位置推定手法について述べ,4章で評価手法の

表1 回転磁石マーカを使ったこれまでの研究との比較

	推定項目	推定可能 方位角	推定距離 限界 [m]
これまでの研究 (参考文献 [8][9])	通過検出, 位置(2 次元)	8 方向	2.0
本研究	位置(3次元)	100 方向	3.0

検討について述べる.そして,5章で提案手法の評価実験について述べ,最後に6章でまとめと今後の課題について述べる.

2. 関連研究

磁気を用いた位置推定にはいくつかの手法が存在する. 我々が行った研究では, Murata らが建物内の残留磁気を 用いた屋内位置推定手法 [7] を検討している.この手法で は,あらかじめ建物内に存在している残留磁気を計測して Fingerprint を作成し,それを用いることで屋内位置推定を 行う.しかし,この手法では推定精度が環境に大きく依存 してしまう問題があった.

また,磁気を用いた3次元位置推定システムとして Polhemus 社製の POLHEMUS^{*5} が存在する.これは,使用者 がセンサを装着し,専用の磁場発生装置による磁気をセン シングして,モーションキャプチャーなどのリアルタイム 位置測位を可能にするものである.しかし,専用の機器を 腕や腰に装着する必要があるため,多数の人の位置を推定 する場面では有効ではないと考えられる.

磁石を用いた位置推定手法として、Schlageter らは2次 元的に配置したホールセンサを用いて磁石の3次元位置を 推定する手法 [10] を検討している.この手法は磁石が発生 させる磁気を磁気センサで検知して磁石の3次元位置を推 定する.また、磁気を発生させるために永久磁石を用いて いるため、コストを低く抑えられる.しかし、地磁気などの 環境磁気が存在している状況下では永久磁石が発生させた 磁気の判別が難しく、推定可能な場所が限定されると考え られる.また複数の磁気センサを必要とするため、スマー トフォンを用いた位置推定に利用することはできない.

動的磁場を用いた位置推定手法として, Paperno らは回 転するコイルに電流を流して発生する動的磁場を利用した 位置推定手法 [11] を検討している.この手法ではコイルの 回転速度や磁気センサが検知した磁気の情報から3次元位 置を推定する.Huらは3つのコイルをそれぞれ直交する ように配置し,それらに別々の周波数の交流電流を流すこ とで発生する動的磁場を利用した位置推定手法 [12] を検討 している.この手法では磁気センサは異なる3つの周波数 で振動する動的磁場を検知し,その磁気データから磁気セ ンサの3次元位置を推定する.これらの手法は動的磁場を

*5 POLHEMUS: http://www.ddd.co.jp/polhemus/

図1 回転磁石マーカによる位置推定のイメージ

用いた手法であるため,環境磁気の影響下での位置推定が 可能であると考えらえる.しかし,コイルから数 m 離れた 距離に存在する磁気センサで検知可能な磁気を発生させ続 けるために大きな電流を流し続ける必要があり,維持コス トの面で問題がある.また磁気を発生させるために数 kHz の交流電流を用いているが,スマートフォンのサンプリン グ周波数は数 10Hz~100Hz 程度であるため,サンプリング 定理から数 kHz の周波数成分を持つ磁気を正しく復元する ことはできない.

以上の関連研究から、スマートフォンを用いて位置推定 するためには、低いサンプリング周波数でも検知できるよ うな低周波で振動する磁気を用いる必要があり、維持コス トを低く抑えるために電流を用いることなく磁気を発生さ せる手法の検討が必要であると考えられる.

我々は磁石を回転させて発生する磁場から位置を推定 する手法を検討した,その推定手法の内容を次の章から述 べる.

3. 3次元位置推定手法

磁気センサは x, y, z 軸成分を持っており, それらの値は スマートフォンの 3 次元位置及び姿勢と関係している. そ のため,回転磁石による磁場を調べれば, スマートフォンの 3 次元位置推定と姿勢推定が可能になると考えられる. 図 1 に本提案のコンセプトを示す.本研究は回転磁石マーカ を中心とした 3 次元極座標におけるスマートフォンの位置 (r, θ, ψ) を回転磁石マーカによる磁気とそのモータ角度か ら推定する手法を提案する.

本章ではまず,回転する磁石が3次元位置に発生させる 磁気の理論式を導出する.次に,磁気の値とモータの回転 角度からスマートフォンの3次元位置を推定する方法を検 討する.以後,rを距離, θを方位角, ψ を仰角と呼ぶことに する.

3.1 回転磁石による磁気

推定を行うため、回転磁石が位置 (r, θ, ψ) に発生させる 磁気の式を求める. 3 次元極座標における磁気を図 2 のよ うに定義する. ここで, ω はモータの回転速度, t は時刻で ある. 次に, 磁気を直交座標系での磁気成分 H_x, H_y, H_z で 表すことを考える. 図 2 の H_r, H_{φ} のようにそれぞれ定義 すると H_x, H_y, H_z は $H_r(r, \theta, \psi), H_{\varphi}(r, \theta, \psi)$ を用いて次の ように書くことができる.

$$H_x = H_r(r, \theta, \psi) \cos \psi \cos \theta + H_{\varphi}(r, \theta, \psi) \cos \psi_{\varphi} \cos \theta_{\varphi}$$
(1)

$$H_{y} = H_{r}(r, \theta, \psi) \cos \psi \sin \theta + H_{\varphi}(r, \theta, \psi) \cos \psi_{\varphi} \sin \theta_{\varphi}$$
(2)

$$H_z = H_r(r,\theta,\psi)\sin\psi + H_\varphi(r,\theta,\psi)\sin\psi_\varphi \tag{3}$$

ここで, 磁石が発生させる磁気を磁気双極子が発生させる 磁気で近似できると仮定する. 磁気双極子が発生させる磁 気は距離 r が磁気双極子間の距離よりも十分に大きい時, 円電流が発生させる磁気と等しいとみなせる. このことか ら, $H_r(r, \theta, \psi), H_{\omega}(r, \theta, \psi)$ は次のように表すことができる.

$$H_r(r,\theta,\psi) \to H_r(r)\cos\varphi$$
 (4)

$$H_{\varphi}(r,\theta,\psi) \to H_{\varphi}(r)\sin\varphi$$
 (5)

これらの関係より,式 (1)(2)(3) は次の式に書き直せる. また,以後 $H_r(r), H_{\varphi}(r)$ を単に H_r, H_{φ} と表す.

 $H_x = H_r \cos\varphi \cos\psi \cos\theta + H_\varphi \sin\varphi \cos\psi_\varphi \cos\theta_\varphi \quad (6)$

 $H_y = H_r \cos\varphi \cos\psi \sin\theta + H_\varphi \sin\varphi \cos\psi_\varphi \sin\theta_\varphi \quad (7)$

$$H_z = H_r \cos\varphi \sin\psi + H_\varphi \sin\varphi \sin\psi_\varphi \tag{8}$$

次に図 2 より, φ , θ_{φ} , ψ_{φ} と方位角 θ , 仰角 ψ , モータの回転 角 ωt との関係式を導くことができる.

$$\cos\varphi = \cos\psi\cos(\theta - \omega t) \tag{9}$$

$$\cos\theta_{\varphi} = -\frac{\sin^2\psi\cos(\theta - \omega t)}{\sqrt{1 - \cos^4\psi\cos^2(\theta - \omega t)}} \tag{10}$$

$$\cos\psi_{\varphi} = \sqrt{\frac{1 - \cos^4\psi\cos^2(\theta - \omega t)}{1 - \cos^2\psi\cos^2(\theta - \omega t)}}$$
(11)

このことから H_x, H_y, H_z を方位角 θ , 仰角 ψ , モータの回 転角 ωt で表すと次のようになる.

$$H_x = H_r \cos^2 \psi \cos \theta \cos(\theta - \omega t) - H_\varphi \frac{\sin^2 \psi \cos(\theta - \omega t)}{\sqrt{1 - \cos^2 \psi \cos^2(\theta - \omega t)}}$$
(12)

$$H_y = H_r \cos\psi \sin\theta \sqrt{1 - \cos^2\psi \cos^2(\theta - \omega t)} - H_\varphi \frac{\sin(\theta - \omega t)}{\sqrt{1 - \cos^4\psi \cos^2(\theta - \omega t)}}$$
(13)

$$H_{z} = H_{r} \sin \psi \cos \psi \cos(\theta - \omega t) + H_{\varphi} \frac{\sin \psi \cos \psi \cos(\theta - \omega t)}{\sqrt{1 - \cos^{2} \psi \cos^{2}(\theta - \omega t)}}$$
(14)

これらの式を用いて, 方位角 θ と磁気, 仰角 ψ と磁気の関係式を導出する.

図2 回転磁石による磁気

3.2 方位角推定

磁場のノルムとモータの回転角度 ωt を利用して方位角 θ を推定する.スマートフォンの位置 (r, θ, ψ) での磁場の ノルムは式 (12)(13)(14) から次の式になる.

$$H = \sqrt{H_{\varphi}^{2} + (H_{r}^{2} - H_{\varphi}^{2})\cos^{2}\psi\cos^{2}(\theta - \omega t)}$$
(15)

この式から仰角 $\psi \neq 90^{\circ}$ とすると, $\theta - \omega t = 0^{\circ}, 90^{\circ}$ の時, 磁 場のノルムが最大になることがわかる. つまり磁場のノル ムが最大となった時のモータの角度 ωt から方位角 θ を推 定できる. ただしノルムが最大となる方位角 θ が 2 つ存在 するため, 推定される方位角 θ が 2 つ存在する問題がある.

3.3 仰角推定

磁気の直交座標成分 H_x, H_y, H_z を用いて仰角 ψ を推定 する.式 (12)(14) に位置 $\theta = \omega t$,式 (13) に $\theta = \omega t + \pi/2$ を代入すると次の式が導ける.

$$H_x = -H_\varphi + (H_r + H_\varphi)\cos^2\psi \tag{16}$$

$$H_y = H_\varphi \tag{17}$$

$$H_z = (H_r + H_{\varphi})\cos\psi\sqrt{1 - \cos^2\psi} \tag{18}$$

式 (16)(17)(18) を仰角 ψ について解くと次の式になる.

$$\psi = \arccos\left(\frac{H_x + H_y}{\sqrt{(H_x + H_y)^2 + H_z^2}}\right) \tag{19}$$

ここで, H_x , H_z は $\theta = \omega t$ で H_y は $\theta - \omega t = 0^\circ$, 90° でそれ ぞれ最大値を取るので,式 (19) における H_x , H_y , H_z にそ れぞれの磁気データの振幅を代入すれば仰角 ψ を推定でき る.ただし,ノルムを利用した方位角 θ の推定とは異なり, 磁気の直交座標成分 H_x , H_y , H_z はスマートフォンの姿勢 に依存するため,あらかじめスマートフォンの姿勢を取得 し,回転磁石マーカと座標系と一致させる必要がある.

3.4 距離推定

磁場のノルムの振幅が回転磁石マーカからの距離に依存 することを利用して,スマートフォンの回転磁石マーカか らの距離を推定する.我々は以前の研究 [9] で回転磁石マー カを用いた距離推定の検討を行った.その際,回転磁石マー カとスマートフォン間の距離とノルムの振幅との関係を計 測し,その計測値から求めた近似曲線を用いて距離を推定 した.2章で磁石による磁気を磁気双極子による磁場で近似 したので,円柱磁石が中心軸上に発生させる磁気は距離に 反比例すると仮定する.近似曲線による推定精度の違いを 調べるため,式(20)(21)の2つに対して近似曲線を求めた. ここで, *h_{norm}* は磁場のノルムの振幅,*d* は回転磁石マーカ からの距離, A, B, C はフィッティングパラメータである.

$$h_{norm} = Ad^{-B} + C \tag{20}$$

$$h_{norm} = Ad^{-B} \tag{21}$$

4. 評価手法の検討

本章では、3章で示した3次元位置推定手法の評価手法 を検討する.本研究の目標はスマートフォンの3次元位置 を推定することであるが、今回は最初の段階として、方位角 θ ,仰角 ψ ,距離rをそれぞれ個別に推定し、それらの推定 精度を確認することを目的とした.

まず, 推定精度を向上させるため新たに作成した回転磁 石マーカについて説明する.次に, それぞれの実験での共 通設定について説明する。最後に, 推定精度を向上させる ために磁気データに対して施したノイズの影響を軽減する 処理について説明する.

4.1 回転磁石マーカの設計

評価実験を行うため,新たに回転磁石マーカを作成した.これまでの我々の研究 [9] で作成した回転磁石マーカでは方位角 θ を 45° 刻みの 8 方向でしか推定できなかった.今回我々は推定精度を高めるため,磁石を回転させるモータにステッピングモータ(MERCURY MOTOR SM-42BYG011-25)を採用した.ステッピングモータを用いることでモータの角度データを方位角 θ の推定に利用できる.さらに,モータのステッピング角度である 3.6° 刻みの 100方向での方位角 θ の推定が可能になった.このモータに対して 3D プリンタで作成した台を用いて磁石を回転軸に固定する.図 3 に実際に作成した回転磁石マーカを示す.

次に、このステッピングモータを RaspberryPi^{*6} に接続 し、モータの角度データと時刻データを RaspberryPi に 記録する.次に、スマートフォンと RaspberryPi の時刻を NTP (Network Time Protocol) によって同期させる.実 験後、RaspberryPi に記録されたデータとスマートフォン に記録されたデータをパソコンに送信し、それぞれのデー タを照らし合わせることでそれぞれの推定を行う.実験の 概要を図5に示す.

4.2 実験の共通設定

実験に使用するスマートフォンは iPhone 6 Plus, 磁気セ ^{*6} RaspberryPi: https://www.raspberrypi.org/

図6 実験の様子、(左)方位角推定、(右)仰角推定

ンサのサンプリング周波数は 100Hz とした. モータの回転 速度は 1Hz とし, 方位角 θ = 0°の位置から回転を始めるも のとした. 今回の実験では, 回転磁石マーカと座標系が一 致するようにスマートフォンの姿勢を固定して実験を行っ た. 実験の際のスマートフォンの座標系は図 4 の通りであ る. また各計測において, 環境磁気が実験結果に与える影 響を抑えるため, スマートフォンを中心に回転磁石マーカ を移動させて計測した. 実際に行った実験の様子を図 6 に 示す.

4.3 磁気データ対する処理

ここでは磁気データに含まれるノイズの影響を軽減する ために行った処理について説明する.回転磁石マーカから の距離が離れるに従い,回転磁石マーカによる磁気の影響 よりもノイズの影響が相対的に強くなり,磁気データから 回転磁石マーカによる磁気を判別することが困難になる. そのため,得られた磁気データに対して以下で述べる処理 を施した.またこれらの処理を施した例として,回転磁石 マーカからの距離 2.0m,方位角 $\theta = 0^\circ$ で計測した磁気デー タの x 軸成分の場合を挙げる.

図7 ノイズ軽減前と後の比較

4.3.1 ノイズの軽減

磁気データに含まれるノイズがランダムなものであると 仮定すると,振動の位相を揃えた磁気データを足し合わせ ることでノイズによる影響が軽減されると考えられる.そ こでまず,得られた磁気データから計測時間10秒分のデー タを取り出し,そのデータをモータの回転周期である1秒 ごとに区切って10個のデータに分割する.次に,これら10 個のデータの時刻を全て0~1秒とし,データの平均をとる.

元の磁気データと実際に処理を施した後の磁気データを 図7に示す.この図から,処理を施す前と比べて磁気データ の振動の特徴がより明確に表れていることがわかる.これ は前述の処理によってノイズが軽減したためと考えられる. また,モータの回転角度が0°の時に磁気データのx軸成分 が最大になっており,3章で求めた式(12)に方位角 $\theta = 0^\circ$, 仰角 $\psi = 0^\circ$ を代入した場合に対応していることがわかる. 4.3.2 平滑化処理

前述の処理によってノイズの影響を軽減できたと思われ るが、依然としてノイズの影響は残っており、推定結果に影 響を及ぼすと考えられる.そこで移動平均を利用して磁気 データの平滑化を行った.適切な平滑化を行うため、窓幅 と移動平均を計算する回数をいくつか変えて移動平均を計 算した.

図8に移動平均処理の回数を5回で固定し,窓幅をいく

図 9 移動平均処理の回数による結果の比較

つか変えて計算した結果を示す.またここでは,図を見や すくするために縦軸のスケールを図7と変えている.窓幅 2サンプルでは平滑化が十分に行われていないように見え るが,窓幅3サンプル以降では結果に目立った変化が表れ なかった.このことから,今回は窓幅3サンプルで十分な 処理が行われていると判断した.

次に,図9に窓幅3サンプルで固定し,移動平均処理の 回数をいくつか変えて実行した結果を示す.移動平均処理 の回数が5回の時では十分に平滑化されていないように見 えるが,10回以降では結果に目立った変化が表れなかった. このことから,今回は移動平均処理の回数10で十分な処理 が行われていると判断した.

以上の結果から、窓幅3サンプル、移動平均処理の回数 10として磁気データの平滑化を行った.

4.3.3 カーブフィッティング

これまでの処理で得られたデータに対してカーブフィッ ティングを行い,それぞれの軸成分ごとの磁気データの近 似曲線を求めた.3章での議論から,磁気センサが検知する 磁気の強さを以下の式 (22) で定義される正弦波でカーブ フィッティングした.また今回は回転磁石マーカのモータ の回転速度が1Hz だとわかっているものとした.ここで,*h* は磁気の値, *D*.*E*,*F* はフィッティングパラメータである.

$$h = D\sin(2\pi(\omega t + E)) + F \tag{22}$$

以上の処理を x,y,z 軸それぞれの磁気データに対して行い, それら 3 つの近似曲線から方位角 θ , 仰角 ψ , 距離 r を推定 する.

5. 評価実験

本章では4章で検討した評価手法による実験の結果を示 す.今回の実験では方位角 θ ,仰角 ψ ,距離rをそれぞれ推 定し,個別に推定結果を評価する.

5.1 方位角推定の評価

回転磁石マーカとスマートフォンの距離を 1m で固定し,

表 2 方位角 θ の推定結果

方位角 [°]	()	4	5	9	0	1:	35	18	80
	θ_1'	θ_2'								
平均誤差 [°]	10	9	11	10	1	4	6	3	4	2
標準偏差 [°]	5	3	3	3	5	5	6	3	6	6

図 10 距離ごとの方位角 θ の推定精度

方位角 $\theta = 0^{\circ}, 45^{\circ}, 90^{\circ}, 135^{\circ}, 180^{\circ}, 225^{\circ}, 270^{\circ}, 315^{\circ}$ の8か 所で計測した.計測時間は各場所で10秒,推定回数は各方 位角θで10回ずつ行った.結果を表2に示す.それぞれの 推定結果は小数点以下を四捨五入した.2章で触れたよう に、本手法では推定される方位角が2つ存在する. それらの 推定方位角を θ'1, θ'2 とする. ここで, 平均誤差は 10 回の推 定方位角の平均から正解方位角を引いた値の絶対値をとっ た値である.次に、方位角の推定精度と磁気マーカからの距 離との関係を調べるため、方位角を $\theta = 0^\circ$ で固定し、回転 磁石マーカからの距離が 50cm~4.0m を 50cm 間隔の 8 か 所場所で方位角θの推定を行った.結果を図10に示す.そ れぞれの推定結果は小数点以下を四捨五入した.距離3.0m までの推定では、平均誤差の最大値が14°以下、標準偏差が 12°以下の精度であった.一方, 3.5m, 4.0m での計測では, 平均誤差が 11° 以下ではあるものの, 標準偏差がいずれも 30°を超えており、推定精度の安定性が減少していること がわかる.

5.2 仰角推定の評価

仰角推定を行う際,距離を一定に保ったまま様々な仰角で計測することが望ましいが,一定の距離を保ったまま仰角 ψ のみを変化させて計測を行うことは難しい. そこで今回の計測では回転磁石マーカとスマートフォンを同じ向きに横向きにして仰角を推定した(図 6).

スマートフォンの設置場所は回転磁石マーカからの距離 を 1m で固定し, 仰角 $\psi = -60^{\circ}, -30^{\circ}, 0^{\circ}, 30^{\circ}, 60^{\circ}$ の5か 所で計測した.計測時間は各場所で 10 秒, 推定回数は各場 所で 10 回ずつ行った.また方位角 θ が2つ推定されてし まうため仰角 ψ も2つ推定される.2つの推定仰角をそれ ぞれ ψ'_1, ψ'_2 とする.

結果を表3に示す.それぞれの推定結果は小数点以下を

表 3 仰角 ψ の推定結果										
仰角 [°]	-6	30	-3	30	()	3	0	6	0
	ψ'_1	ψ'_2								
平均誤差 [°]	8	10	5	2	4	3	3	4	0	4
標準偏差 [°]	10	2	2	2	1	1	1	1	2	2

図 11 仰角ごとの磁気データ

四捨五入した.推定仰角 ψ'_1, ψ'_2 の平均誤差は 10°以内となっており,方位角 θ の推定と同程度の推定精度であることがわかる.

標準偏差は仰角 -60° の場合を除けば 2° 以下となってお り, 方位角 θ の推定よりも低い値であることがわかる. こ れは仰角 ψ の推定に磁気の値のみを用いたため, モータ角 度 ωt を用いた方位角 θ の推定とは異なり, モータの回転の 安定性の影響を受けにくいためだと考えられる.

また仰角 -60° においてのみ標準偏差が大きくなってい る原因は, 計測時に回転磁石マーカを横向きに倒したこと により, 仰角の推定結果に影響が出たと考えられる.また, 仰角推定時の磁気データの様子を図 11 に示す.図から回 転磁石マーカが発生させる磁気のベクトルがスマートフォ ンを中心に楕円に近い形状を描くことがわかる.さらに仰 角 ψ によってその楕円が傾いていき, 仰角 $\psi = 60^{\circ}$ でほぼ 垂直になっている様子がわかる.

5.3 距離推定の評価

回転磁石マーカからのスマートフォンの距離を推定する ため,距離とスマートフォンが検知するノルムの振幅との 関係を調べておく必要がある。そのため,回転磁石マーカ とスマートフォンとの距離を 30cm~4.0m まで 10cm ごと に変化させ磁気データを計測した.計測時は方位角 $\theta = 0^{\circ}$, 仰角 $\psi = 0^{\circ}$ とし,計測時間はそれぞれ 15 秒とした.

この実験によって得られた磁気データに対して3章で述 べた処理を施し,磁場のノルムの近似曲線を求めた.求め たノルムの近似曲線の極大値から極小値を引き,2で割っ た値をノルムの振幅とした.これらの38個のデータに対し てカーブフィッティングを行うことで近似曲線を求めた。

求める近似曲線は2章で示した式(20)(21)の2つに対し

図 13 距離と磁場のノルムの振幅の関係(1.0m~4.0m)

図 14 距離推定の推定精度

て行った.以後,式(20)を近似曲線1,式(21)を近似曲線 2と呼ぶことにする.カーブフィッティングの結果,近似曲 線1のパラメータはA = 1.590,B = 3.146,C = 0.111,近 似曲線2のパラメータはA = 1.636,B = 3.124となった. 決定係数で評価した結果,近似曲線1は0.9997,近似曲線2 は0.9996であったため,2式ともよく近似できていると考 えられる.これらの近似曲線の様子を図12,13に示す.

次に, 求めた近似曲線を用いて距離推定を行った.推定 した距離は 50cm~4.0m を 50cm 間隔の 8 か所, 計測時間 は 1 回あたり 15 秒, 各計測場所で 10 回計測を行い, その

図 15 2.0m での磁気の x 成分のパワースペクトル

平均誤差と標準偏差を導出した.その結果を図 14 に示す. 推定結果は小数第三位以下を四捨五入した.

近似曲線1による推定結果は1.5mまでは近似曲線2よりも高い精度となっているが、2.0mでの推定で大きくズレが生じ、2.5m以降では距離推定できなかった.この理由は図13(緑)からわかるように、近似曲線1は1.0m以上の距離で計測データからのズレが生じており、さらに、ノルムの振幅の値がフィッティングパラメータC=0.111より小さくなると、それに対応する距離が存在しないため推定が不可能になるからである.一方、近似曲線2による推定結果は2.0m以上の推定では近似曲線1よりも精度が高く、また2.5m以上の距離でも推定が可能であった.距離3.0mまでの推定では平均誤差が19cm以下、標準偏差が17cm以下の精度であった.距離3.5m、4.0mの推定では、平均誤差が22cm以下ではあるものの、それぞれ標準偏差が50cm以上、1.0m以上となっており、距離が遠ざかるにつれて推定精度の安定性が減少していることがわかる.

回転磁石による磁気の影響を調べるため, それぞれの実 験での磁気 x 軸成分のパワースペクトルを図 15~図 19 に 示す.距離 3.0m までのパワースペクトルでは, モータの回 転速度である 1Hz にピークが表れていることがわかる.し かし,距離 3.5m 以上では 1Hz のピークはノイズと同程度 の大きさになっており, スマートフォンが回転磁石マーカ による磁気を検知しているかどうかを判別することが困難 になると考えられる.このピークの減少をどれだけ抑えら れるかが今後の課題である.

ここで, 今回の結果と我々がこれまでに行った研究 [9] を 比較する.表4に比較結果を示す.過去の研究では,1.4m までの推定では平均誤差4cm以内,2.0mまでの推定では平 均誤差13cm以内の推定精度であった.今回の結果は2.0m までの推定で平均誤差9m以内,標準偏差8cm以内である ため,過去の結果と比べて推定精度が向上していることが わかる.また,過去の研究では2.0mまでしか距離推定がで きなかったが,今回の研究では3.0m以上の距離でも距離推 定が可能になった.

図 16 2.5m での磁気の x 成分のパワースペクトル

図 18 3.5m での磁気の x 成分のパワースペクトル

表 4 これまでの研究との距離推定誤差の比較

	1.4m まで	2.0m まで	3.0m まで
これまでの研究 (参考文献 [9])	4cm	13cm	測定不能
本研究	1cm 以下	9cm	19cm

今回の距離推定に用いた近似曲線はいずれも決定係数が 1 に近い値であったが,図13から1.0m~4.0mの範囲では 必ずしも十分に近似できていないように思われる.そのた め,より適切な近似曲線を求めることで推定精度を向上さ

図 19 4.0m での磁気の x 成分のパワースペクトル

せられる可能性がある.

また距離が離れるにしたがって標準偏差が増加していく 原因は,距離が離れるにしたがってノイズの影響が大きく なり,3章で示した方法でノイズの影響を十分に軽減でき なくなるためだと考えられる.そのため,推定精度を向上 させるためノイズの影響を軽減する処理をさらに工夫する 必要がある.

6. まとめと今後の課題

本研究では回転磁石マーカを用いたスマートフォンの3 次元位置推定手法を検討した.検討手法では回転磁石マー カが発生させる動的磁場をスマートフォンの磁気センサで 検知し,その磁気データからスマートフォンの3次元位置 を推定する.評価実験により,距離を1mで固定した場合で の実験では,方位角 θ が平均誤差11°以下,標準偏差6°以 下,仰角 ψ が平均誤差10°以下,標準偏差10°以下で推定 が可能であった.次に回転磁石マーカからの距離と推定精 度との関連を確認する実験を行った.距離rを0.5m~4.0m を0.5m 刻みで行った実験では,距離rが平均誤差19cm以 下,標準偏差21cm以下,方位角 θ が平均誤差14°以下,標 準偏差12°以下で推定が可能であった.

今回検討した手法では 3m 以内の範囲であれば 3 次元的 な位置の推定が可能である.また今回, NTT ドコモとの共 同研究で回転磁石マーカのプロトタイプを製作し, 先に行 われた情報処理学会第 79 回全国大会において展示を行っ た.図 20 にその様子を示す.この展示ではスマートフォン の 3 次元位置を回転磁石マーカによって推定し, その高さ に応じてディスプレイに表示されている広告の位置が変化 するといったことが行われた.

今後の課題として, 推定精度の向上と推定可能距離の拡 大のため, 磁気データにおけるノイズの影響を抑える手法 の検討する必要がある.また, 今回の実験ではスマートフォ ンが静止している状態で推定したが, 今後リアルタイムで のスマートフォンの3次元位置推定の実現を検討する必要 がある.さらに, 今回は3次元位置推定のみを考えたが, 今

図 20 情報処理学会でのデモの様子

後スマートフォンの姿勢推定を検討する予定である. 姿勢 推定によって推定方位角θが2つ存在する問題も解決可能 だと考えられる.

参考文献

- Krumm, J., Hinckley, K., The NearMe Wireless Proximity Server, In Proceedings of The International Conference on Ubiquitous Computing (UbiComp '04), pp.283-300, 2004.
- [2] Zhuang, Y., Syed, Z., Georgy, J., El-Sheimy, N., Autonomous smartphone-based WiFi positioning system by using access points localization and crowdsourcing, Pervasive and Mobile Computing, Vol.18, pp.118-136.
- [3] Oksar, I., A Bluetooth Signal Strength Based Indoor Localization Method, In Proceedings of 2014 Internatinal Conference on Systems, Signals and Image Processing(IWSSIP), pp.251-254, 2014.
- [4] Rida, M., Liu, F., Jadi, Y., Algawhali, A., Askourih, A., Indoor Location Position Based on Bluetooth Signal Strength, In Proceedings of the 2nd International Conference on Information Science and Control Engineering, pp.769-773, 2015.
- [5] Muller, P., Wymeersch, H., Piche, R., UWB Positioning with Generalized Gaussian Mixture Filters, Mobile Computing, IEEE Transactions on, Vol.13, Issue10, pp.2406-2414, 2014.
- [6] Medina, C., Segura, J., Angel, D., Ultrasound indoor positioning system based on a low-power wireless sensor network providing sub-centimeter accuracy, Sensors (Switzerland), Vol.13, Issue.3, pp.3501-3526, 2013.
- [7] Murata, Y., Kaji, K., Hiroi, K., Kawaguchi N., Pedestrian Dead Reckoning based on Human Activity Sensing Knowledge, In Proceedings of the 2nd International Workshop on Human Activity Sensing Corpus and its Application (HASCA2014), pp.797-806, 2014.
- [8] 武島知勲, 梶克彦, 廣井慧, 河口信夫, 神山剛, 太田賢, 稲村浩. 通路に設置した回転する磁石による歩行者の通過検出 手法. 情報処理学会論文誌, Vol.58, No.1, 2017.
- [9] 武島知勲, 梶克彦, 廣井慧, 河口信夫, 神山剛, 太田賢, 稲 村浩. 回転磁石マーカに基づくスマートフォン位置推定. DICOMO2016.
- [10] Schlageter, V., Drljaca, P., Popovic, R., Kucera, P., A Magnetic Tracking System based on Highly Sensitive Integrated Hall sensors. JSME International Journal Series C, Vol.45, Issue.4, pp.967-973, 2002.
- [11] Paperno, E., Sasada, I., Leonovich, E., A New Method for Magnetic Position and Orientation Tracking, IEEE Transactions on Magnetics, Vol.37, Issue.41, pp.1938-1940, 2001.

[12] Hu, C., Song, S., Wang, X., Meng, M., Li, B., A novel positioning and orientation system based on three-axis magnetic coils, IEEE Transactions on Magnetics, Vol.48, Issue.7, pp.2211-2219, 2012.