
RGNet: Robust Gravity Estimation Neural Network
for IMU-based Localization Using Smartphone

Takuto Yoshida1,2, Kenta Urano1, Shunsuke Aoki3, Takuro Yonezawa1, and Nobuo Kawaguchi1
1Graduate School of Enginnering, Nagoya University

2E-mail: takuto@ucl.nuee.nagoya-u.ac.jp
3National Institute of Informatics

Abstract—With the rapid development of Micro Electro-
Mechanical Systems (MEMS) technologies, indoor navigation
and localization with Inertial Measurement Unit (IMU) has
been increasingly feasible. IMU-based indoor localization is
a low-cost, energy-efficient, and infrastructure-free approach.
There are various methods for it, and most of them require
gravity estimation (e.g. the projection of angular velocity, the
extraction of horizontal acceleration). In particular, when you use
a smartphone, it changes the orientation of its IMU frequently,
therefore the gravity estimation needs to be more robust to
sensor orientation and its noise. In this paper, we propose a
gravity estimation method based on deep learning called RGNet
(Robust Gravity Estimation Neural Network) that is robust to
sensor orientation and noise. We train an LSTM (Long short-
term memory)-based neural network that estimates gravity from
acceleration and angular velocity. Furthermore, for the problem
that it is difficult to prepare the ground truth of gravity directly,
we propose a method to train the gravity estimation neural
network indirectly using the heading, taking advantage of the fact
that the heading can be estimated from the gravity and angular
velocity. The evaluation results show that the accuracy of the
proposed method outperformed the baseline gravity estimation
method (Android API, Low-pass filter, and Extended Kalman
filter). We also confirmed that the accuracy of IMU-based
localization is affected by the difference in gravity estimation
methods.

Index Terms—Dead reckoning, Indoor navigation, Recurrent
neural networks, Smartphone sensors

I. INTRODUCTION

A variety of location-based applications and services re-
quire indoor navigation and localization technologies. For
example, map navigation and human-mobility analysis are
heavily relaying on indoor navigation and localization. There
are two types of technologies: 1) infrastructure-based method;
2) Inertial measurement unit (IMU)-based method. First, the
infrastructure-based method includes Bluetooth low energy
(BLE) beacon, ultra-wideband (UWB), wireless fidelity (Wi-
Fi), and radio-frequency identification (RFID) [1]–[5]. It can
achieve accurate and stable position estimation if you can
deploy a large number of signal transmitting devices. However,
they cost a lot, and most of it requires adjusting the parameters
depending on the indoor situation. On the other hand, the IMU-
based method is an approach that uses IMU data to continu-
ously calculate by dead reckoning the position. Therefore, the
method becomes low-cost, energy-efficient, and infrastructure-
free one. Furthermore, the recent advance of Micro Electro-

Mechanical Systems (MEMS) technology enables us to apply
it to small devices such as smartphones and wearable devices.
In fact, many researchers have study of IMU-based indoor
navigation and localization [6]–[11].

A low-cost IMU of the smartphone may be noisy and
bias, which can cause estimation errors. Therefore, various
methods have tried to solve this problem. Kang et al. proposed
SmartPDR [12], which integrates angular velocity and geo-
magnetism and complement each other’s shortcomings. PCA
(Principal Component Analysis)-based positioning methods
[13]–[15] have also been proposed, including RMPCA [16]
proposed by Deng et al. This method provides the heading
estimation that is robust to changes in sensor orientation
and sensor noise. These methods all use 3-axis gravity g:
SmartPDR uses it to extract z-axis angular velocity ωz from 3-
axis angular velocity ω from Equation (1); PCA-based method
uses gravity to extract horizontal acceleration ah from 3-axis
acceleration a form Equation (2).

ωz =
ω · g
|g|

(1)

ah = a−
(
a · g
g · g

)
g (2)

The IMU can measure the raw acceleration, but not the gravity
directly. This means that gravity estimation plays a significant
role in IMU-based indoor localization. In addition, if you use
smartphone sensors, the sensor orientation changes frequently,
so you need a gravity estimation method that is robust to
sensor orientation and noise. However, there are only a few
studies discussing methods for estimating gravity [17], [18].

Therefore, we propose a method for estimating the gravity
using deep learning that is robust to sensor orientation and
sensor noise. Specifically, we train an LSTM-based neural
network called RGNet (Robust Gravity Estimation Neural
Network) to estimate 3-axis gravity from 3-axis acceleration
and 3-axis angular velocity using a large amount of data.
The biggest problem with this method is that it is difficult
to prepare high-precision gravity data that can be used as
the ground truth when we train RGNet. However, we can
solve this problem by indirectly training method. As in general
supervised learning, it calculates the gradient from the loss of
estimates and updates the parameters using it. However, the
loss is calculated from the estimated heading, not estimated(C)2021 IPSJ

gravity. We estimate the heading by integrating the z-axis
angular velocity projected onto 3D vector estimated by a
neural network. As a result, the neural network learns how to
estimate the gravity indirectly. In this paper, we also examine
the effect of the accuracy of the gravity on the accuracy of
localization using Oxford Inertial Odometry Dataset (OxIOD),
three baseline methods (Android API, Low-pass filter, and
Extended Kalman filter). The evaluation results show that the
accuracy of the proposed method outperformed the baseline
method. We also confirmed that the accuracy of localization
is affected by the different gravity estimation methods.

II. RELATED WORK

There are various methods for IMU-based indoor localiza-
tion. Kang et al. have proposed a smartphone-based pedes-
trian dead reckoning system (PDR) called SmartPDR [12]. It
integrates angular velocity and geomagnetism to complement
each other’s shortcomings. Deng et al. have proposed a PCA-
based localization system called RMPCA [16]. They combine
rotation matrix and PCA to achieve heading estimation re-
gardless of sensor orientation and position. There are various
other PCA-based methods have also been proposed [13]–[15].
All of these methods commonly use gravity. The SmartPDR
uses it to extract the z-axis angular velocity from the 3-axis
angular velocity from Equation (1). PCA-based method uses it
to extract the horizontal acceleration from Equation (2). IMU
can measure raw acceleration, but cannot directly measure
gravity. This means that gravity estimation is required in many
IMU-based indoor localization.

There are two main methods for gravity estimation for
the IMU-based indoor localization method, Low-pass filter
(LPF) [17] and Extended Kalman filter (EKF) method [18].
The accelerometer measures raw acceleration consisting of
linear acceleration and gravity. LPF can remove the linear
acceleration from raw acceleration and extract gravity since
the linear acceleration has a higher frequency component than
gravity. It is often used in the IMU-based method because
it is simple and clear. However, there is a latency between
the gravity estimated by it and the ground truth. Referring to
robustness to noise, if the gravity contains a high-frequency
component, the LPF will mistakenly judge it to be linear
acceleration. On the other hand, if the acceleration contains
low-frequency noise, the LPF will mistakenly judge it to
be gravity. EKF method [17] uses angular velocity, initial
gravity, and observed gravity. The angular velocity is sensitive
to changes in the axis of the sensor. Therefore, it is useful
information for tracking changes in the gravity direction. EKF
method estimates the gravity by fusing the observed gravity
with the gravity updated by the angular velocity from the
initial gravity. It can track the dynamics change of the sensor
frame. However, it has a problem that we need to prepare
another method for estimating initial gravity and observed
gravity. Manos et al. [18] have used the gravity which LPF
estimates as observed gravity. However, we suspect that it
will lead to the LPF problem again. Therefore, we require
a new high precision and robust gravity estimation method

and propose a method for estimating the gravity using deep
learning.

Training a deep neural network requires a large number of
data. A dataset that includes inertial sensor data and ground-
truth motion trajectories for IMU-based indoor localization
has been released recently. Robust IMU double integration
(RIDI) dataset [19] has inertial sensor data and 3D motion
trajectory collected by Google Tango. Google Tango provides
the ground truth of device trajectory and orientation using
visual-intertial odometry. In order to use Google Tango, you
need a special device equipped with a fisheye lens and deep
perception sensor. Oxford Inertial Odometry Dataset (OxIOD)
[20] has an inertial sensor data containing enough types of
users, device position, and gait to test the robustness of the
indoor localization system. It also provides high precision
3D trajectory data collected by an optical motion capturing
system (Vicon) as an advantage in supervised learning. Robust
Neural Inertial Navigation (RoNIN) dataset [21] is large
inertial navigation dataset. It has 42.7 hours of IMU-motion
data and various modalities data (e.g. a bag, placing deep
inside a pocket, picking up by hand, while walking, sitting, or
wandering around) collected from 100 human subjects. These
datasets enable a data-driven IMU-based indoor localization.
In this paper, we use OxIOD to train our proposed model.

III. RGNET

RGNet is a new data-driven method for robust gravity
estimation. It estimates gravity from acceleration and angular
velocity using a model based on deep neural network. In
this section, we describe the three key points of RGNet.
We first explain the architecture of RGNet which consists
of three nodes, gravity estimation node, projection node, and
integration node. Gravity estimation node is a neural network
based on LSTM to estimate gravity. Projection node calculates
the horizontal angular velocity from the estimated gravity and
angular velocity. Integration node calculates the heading by
integrating the horizontal angular velocity. The second key
point is a truncated BPTT based training method which allows
for stable training of long-time inertial motion sensor data
by dividing it into short segments. Finally, we explain a loss
function consisting of two terms: squared error of heading
and mean squared error (MSE) of acceleration and gravity as
a regularization term. It allows the learning of the model to
converge optimally.

A. Definition of coordinate frames and symbols

In order to explain our proposed method, we introduce a
number of coordinate systems and symbols. Figure 1 shows
two coordinate systems and the symbols of the physical quan-
tities in those coordinate systems when a pedestrian holds a
smartphone. Device coordinate system (DCS) is the coordinate
frame of the moving IMU embedded in a smartphone. Global
coodinate system (GCS) is the reference coordinate for indoor
localization, and the z-axis is aligned with the negative gravity
direction. aDCS and ωDCS are acceleration and angular
velocity collected by a smartphone. ωDCS has already had the

Fig. 1: Two coordinate systems and the symbols of the physical
quantities - pedestrian holds a smartphone.

offset removed. ĝDCS is the gravity that our proposed method
estimates. ω̂GCS

z is the horizontal angular velocity which is
projection of ωDCS to ĝDCS . ĥ is a heading obtained by
integrating ω̂GCS

z .

B. RGNet architecture

Figure 2 shows the overall RGNet architecture. It consists
of three main nodes.

• Gravity estimation node estimates ĝDCS from aDCS

and ωDCS using a neural network based on LSTM.
• Projection node calculates ω̂GCS

z by projecting ωDCS

to ĝDCS .
• Integration node calculates heading by integrating time-

series ω̂GCS
z .

The first gravity estimation node is a neural network based
on LSTM that estimates ĝDCS . Input data is a 6-dimensional
features, concatenated with aDCS and ωDCS . The LSTM
learns the features of it and converts them into different
dimensions features, called the hidden state and cell state.
The hidden state is propagated to the fully connected layer.
It converts the hidden state to ĝDCS . Its parameters at each
node are common. Furthermore, the hidden state and cell state
of LSTM are propagated to the next LSTM nodes. It enables
RGNet to accept the arbitrary length of time series inertial
sensor data.

The second is a projection node that calculates horizontal
angular velocity ω̂GCS

z from ωDCS and ĝDCS . Its process is
as follows

ω̂GCS
z = −ωDCS · ĝDCS

‖ĝDCS‖
(3)

Equation (3) projects ωDCS to ĝDCS to obtain ω̂GCS
z . We

assume that the axis of pedestrian’s heading change aligne
with gravity. Therefore, ω̂GCS

z means the heading change per
unit of time.

The third is an integration node that integrates ω̂GCS
z to

obtain heading ĥ.

ĥ =
∑

ω̂GCS
z dt (4)

Fig. 2: The architecture of RGNet.

Fig. 3: Training method for RGNet using truncated BPTT.

The dt indicates the sampling interval. Larger sampling in-
tervals result in larger integration errors because our method
uses a simple numerical integration. Therefore, we set it short
sampling interval, 0.01 sec.

C. Training processes

RGNet can handle arbitrary time-series length sensor data in
the estimation phase. However, in the training phase, we have
to be careful with time-series data length especially when it
is long-term. The concerns with training RGNet on long term
data are as following:

• A lot of memory resources consumed by LSTM (e.g.
automatic differentiation and gradient information)

• A mis-propagation of gradient information through long-
term (vanishing/exploding gradient problem)

Therefore, we adapt a truncated BPTT [22], [23] to train
RGNet to avoid these concerns. Truncated BPTT is a method
for learning time series models in which the forward prop-
agation is allowed to propagate without interruption, while
the backward propagation connections are truncated to an
appropriate length. Figure 3 shows the training phase of
RGNet which is divided into short segments. It maintains
the forward propagation link (black arrows), but the backward
link (red arrows) is truncated between short segments. A good
choice of segment length contributes to the success of model
training.

D. Gravity and heading loss

The design of the loss function is very important in the
maximum likelihood estimation method by minimizing the

loss. In our proposed method, it corresponds to the training of a
neural network for gravity estimation. However, most datasets
do not have the ground truth of gravity. Therefore, we provide
a loss function for RGNet to learn a model to regress gravity
indirectly.

RGNet estimates gravity ĝDCS and the heading change δĥ
between short segments as shown in Figure 3. The hidden layer
of the LSTM is propagated between each short segment, but ĥ
is not. Therefore, the initial ĥ for each short segment is 0, and
δĥ represents the change heading within the short segment.
We calculate the back propagation loss from ĝDCS , δĥ and
aDCS , δh each short segments. The δh in the short segment
is defined by the difference in the ground truth heading in the
GCS between the end point and the start point in the short
segment. Our proposed loss function consists of 2 terms: an
heading loss term and a gravity regularization term as

L = ‖δĥ− δh‖22 + κ

∑N
i ‖ĝDCS − aDCS‖22

N
(5)

where κ is a coefficient for adjusting the weight of the second
term. N is segment length, in other words, the number of
samples in the short segment. The first term in equation (5), an
heading loss term, calculates the squared error between δĥ and
δh. The loss is propagated as a gradient to each neural network
through the integration nodes and the projection nodes. The
second term in equation (5), a gravity regularization term
calculates the mean square error (MSE) between time-series
gravity and acceleration. It takes advantage of the similarity
between the low-frequency features of acceleration and grav-
ity, which works to support learning convergence. The loss
is propagated as a gradient to each gravity estimation neural
network.

IV. TRAIN MODEL

In this section, we discuss the training method for RGNet.
The goal of this section is to explain training and evaluation
method and to find the optimal hyperparameters for training
and neural network.

We implement the RGNet architecture using Pytorch [24]
and use the GPU of NVIDIA RTX 2080 Ti for training. We
split OxIOD into training, validation, hyperparameters testing,
and testing. We use training and validation data to train our
models. The hyperparameters testing data is used to grid-
search over a parameter grid of training and neural network.
The test data is used to evaluate the method and to compare
the proposed method with the conventional methods. We use
Adam [25] for optimization. Figure 4 shows the example
of train and validation loss result. They find that the loss
decreases and converges as the epoch progresses. We choose
the best model where the validation loss is minimal. In this
example, it is 500 epochs.

We evaluate RGNet in two ways: heading and trajectory
estimation. We use the Relative Angle Error (RAE) to evaluate
heading, defined as the average of the Root Mean Squared
Error (RMSE) between of orientation [deg] per 1 minute.
This metric evaluates the accuracy of orientation estimation

fairly, regardless of route length or walking time, because
it calculates a minute-by-minute error. We use the heading
estimated by RGNet for our evaluation. We use the Absolute
Trajectory Error (ATE) to evaluate trajectory, defined as the
RMSE between estimated and ground truth trajectories [26].
This is a standard metrics that are also used in visual odom-
etry systems. We calculate the trajectory using the heading
estimated by RGNet and the speed calculated from the ground
truth position.

A. Hyperparameters for training

The hyperparameters for traing are batch size, learning rate,
N , and κ. Table I shows training hyperparameters which are
determined by grid-search.

Batch size and learning rate have a significant impact
on model generalization performance [27]. The appropriate
values of them depend on the amount of the training dataset.
If the batch size is too small or too large, it reduces the
generalization performance [28]. N is the segment length to
be divided in truncated BPTT. It is an important value when
backpropagation because it determines the extent to which
historical information is used to calculate the gradient. If it is
too short, RGNet cannot learn enough time-series information.
On the other hand, if it is too long, it will consume a lot of
computer resources and cause a vanishing/exploding gradient
problem. We experiment to evaluate the impact of the segment
length N of the truncated BPTT using the hyperparameters
testing data of OxIOD. Table III shows the evaluation result for
each N of 200, 400, 800, 1600. The best estimation accuracy
for orientation and trajectory is obtained for the model when
N is 800. κ is a coefficient that is the weight of the regulation
term in equation (5). It takes advantage of the similarity be-
tween the low-frequency features of acceleration and gravity,
which works to support learning convergence. We experiment
to evaluate the impact of κ using the hyperparameters testing
data of OxIOD. Table IV shows the evaluation result for each
κ of 0, 0.01, 0.1, 1, 5. The best estimation accuracy for
orientation and trajectory is obtained for the model when κ
is 0.1.

B. Hyperparameters for neural network

Table II shows hyperparameters of the neural network that
estimates gravity. A num layers is the number of recurrent
layers of LSTM. A hidden size is the number of features in
the hidden state of LSTM. It also matches the input feature
size of a fully connected layer. A dropout is a probability
of an input tensor element to be zeroed. It has the effect of
preventing over-fitting. We have determined these parameters
by grid-search.

V. EVALUATION

In this section, we evaluate the robustness of RGNet in four
perspectives: gait, device position, large-scale floor trajectory,
and dataset modalities. We have three comparative methods:
Android API, LPF, and EKF. The Android API refers to the
motion sensor API provided by Android 10. The LPF can

TABLE I: Hyperparameters for training.

Parameters Value

batch size 512
learning rate 0.001

N 800
κ 0.1

TABLE II: Hyperparameters for our neural network.

Parameters Value

num layers 1
hidden size 64

dropout 0.25

extract the low-frequency component as gravity from accel-
eration [18]. EKF estimates gravity using the initial gravity
and angular velocity and updates it using the observed gravity
[17]. In this paper, we use the gravity estimated by the LPF
as the initial gravity and the observed gravity.

A. Overall result

Table V is the evaluation result of the overall of OxIOD.
Our proposed method outperforms conventional methods. It
succeeds in improving accuracy by about 30-40%. Figure 5
shows an example of a gravity estimation result. Our proposed
method is able to estimate higher frequency component than
other methods. Figure 6 shows the orientation estimated by
the gravity in Figure 5. Our proposed method follows ground
truth exactly, whereas the other methods are affected by the
cumulative error. This result indicates that gravity estimation
is a key factor in orientation estimation.

B. Robustness to gait

We evaluate the robustness to gait using walking, slow-
walking, and running data of OxIOD testing. Table VI shows
the evaluation result. Our proposed method has the highest
accuracy in the walking and slow-walking evaluation result.
In walking, the RAE of the proposed method is 23.11 [deg].
In slow-walking, the RAE of the proposed method is 7.66
[deg].

However, in running results, the API has the highest accu-
racy, and our proposed method is the third. This result can be
attributed to the amount of training data. Table VII shows the
amount of training data per gait. According to Table VII, the
amount of running data is the smallest of the three categories.
From this fact, it shows the amount of training data affects the
estimation accuracy of the model for each gait. This indicates
that the robustness of the proposed method to gait can be
improved by increasing the amount of training data.

C. Robustness to device position

We evaluate the robustness of the device position using
handheld, handbag, and pocket data of OxIOD testing. Table
VIII shows device position evaluation result. It is found that
the accuracy of the proposed method is the highest in all device
positions. In handheld, the RAE of the proposed method is

Fig. 4: Train and validation loss for training processes of
RGNet.

TABLE III: Evaluation results for each segment length.

Metrics N
200 400 800 1600 3200

RAE [deg] 41.16 18.15 13.38 13.45 25.15
ATE [m] 13.03 6.09 3.96 4.87 9.52

34.70 [deg]. In the handbag, the RAE of the proposed method
is 31.14 [deg]. In the pocket, the RAE of the proposed method
is 10.40 [deg]. The 67.45 [deg] error of LPF is much larger
than the others. We suspect that the high-frequency changes of
gravity direction caused by the shaking in the pockets confused
the LPF. It shows our proposed method works robustly even
in a swaying position that confuses the LPF, such as a pocket.

D. Robustness to large-scale floor trajectory

Most of the OxIOD is trajectory data in a narrow area
collected in the Vicon room. However, it also contains large-
scale floor data using Google Tango for evaluation of wide-
area trajectory. Table IX shows the results of the evaluation
of the large-scale floor data, which is an environment that
is assumed to be used for user navigation and human-flow
analysis in shopping malls and underground malls. The results
of RAE and ATE show that the proposed method has the
highest estimation accuracy for orientation and trajectory. The
RAE of the proposed method is 13.48 [deg]. the ATE of the
proposed method is 3.96 [m].

Figure 7 shows an example of orientation and trajectory,
which shows that the estimation of orientation has a significant
impact on the accuracy of trajectory estimation. In Figure 7a,
the API, LPF and EKF fail to close the loop of estimated
trajectory since the estimation orientation is more than 90
[deg] from the ground truth at 140 [sec]. On the other hand, the
proposed method has almost no error in orientation estimation
at 140 [sec], and succeed in closing the trajectory loop. In
Figure 7b, while the API and EKF have errors in orientation
estimation that accumulate over time, the LPF and RGNet have
almost no accumulated errors.

E. Robustness to other dataset

What is important in the data-driven method is that the
models you create work well with a variety of data. Therefore,
we evaluate the RGNet model trained by OxIOD on a different
dataset, which is Nagoya University Inertial Odometry Dataset
(NUIOD). NUIOD is a dataset for IMU-based indoor local-
ization that we collected using Google Tango and smartphone

TABLE IV: Evaluation results for each κ.

Metrics κ
0 0.01 0.1 1 5

RAE [deg] 18.87 21.56 13.38 54.89 45.54
ATE [m] 5.62 8.23 3.96 15.35 14.73

TABLE V: Evaluation results using OxIOD.

Metrics API LPF EKF RGNet

RAE [deg] 22.44 28.20 20.67 18.66
ATE [m] 6.13 4.53 4.89 3.63

IMU sensors in as shown Figure 8. We use data included
walking, fast-walking, and staying, which is a total of 10562
m.

Table X shows the evaluation results using NUIOD. The
API is not included in the evaluation because NUIOD does not
have a gravity data of API. Our proposed method outperforms
the conventional method in the orientation and trajectory
estimation. This result shows that RGNet’s model trained by
OxIOD can be adapted to estimate other datasets. The accuracy
of the proposed method has only a slight advantage over
conventional methods. Further improvement of the model is
the next step.

VI. CONCLUSION

In this paper, we focused on the problem of gravity and
orientation estimation threatened by sensor orientation change
and its noise. To solve this problem, we proposed a new data-
driven method to estimate gravity robustly, which we named
RGNet. It estimates gravity from acceleration and angular
velocity with using a neural network based on LSTM, which
is consists of three nodes, gravity estimation node, projection
node, and integration node. We also proposed a method to
train the gravity estimation neural network indirectly using
the heading, taking advantage of the fact that the heading
can be estimated from the gravity and angular velocity for
the problem that it is difficult to prepare the ground truth of
gravity directly. In addition, we adapted a truncated BPTT
and an original loss function as techniques for this training
method to work well. Finally, we conducted the experiments
to prove for RGNet to improve the accuracy and robustness
through comparison with conventional methods. As a result,
we confirmed that our proposed method is more accurate and
robust than conventional methods. In future work, we plan to
improve the performance of RGNet by training it on more
dataset.

ACKNOWLEDGMENT

This work is supported by JSPS KAKENHI Grant Number
JP17H01762.

REFERENCES

[1] M. Ji, J. Kim, J. Jeon, and Y. Cho. Analysis of positioning accuracy cor-
responding to the number of ble beacons in indoor positioning system.
In 2015 17th International Conference on Advanced Communication
Technology (ICACT), pages 92–95, 2015.

(a) API

(b) LPF

(c) EKF

(d) RGNet

Fig. 5: Estimated gravity vectors by our approach and baseline
approach.

Fig. 6: Estimated orientations by our approach and baseline
approach.

[2] T. Gigl, G. J. M. Janssen, V. Dizdarevic, K. Witrisal, and Z. Irahhauten.
Analysis of a uwb indoor positioning system based on received signal
strength. In 2007 4th Workshop on Positioning, Navigation and Com-
munication, pages 97–101, 2007.

[3] A. Bekkali, H. Sanson, and M. Matsumoto. Rfid indoor positioning
based on probabilistic rfid map and kalman filtering. In Third IEEE In-
ternational Conference on Wireless and Mobile Computing, Networking
and Communications (WiMob 2007), pages 21–21, 2007.

[4] Chenshu Wu, Jingao Xu, Zheng Yang, Nicholas D. Lane, and Zuwei Yin.
Gain without pain: Accurate wifi-based localization using fingerprint
spatial gradient. Proc. ACM Interact. Mob. Wearable Ubiquitous
Technol., 1(2), June 2017.

[5] Wei Gong and Jiangchuan Liu. Sifi: Pushing the limit of time-based
wifi localization using a single commodity access point. Proc. ACM
Interact. Mob. Wearable Ubiquitous Technol., 2(1), March 2018.

[6] Raghav H. Venkatnarayan and Muhammad Shahzad. Enhancing indoor
inertial odometry with wifi. Proc. ACM Interact. Mob. Wearable
Ubiquitous Technol., 3(2), June 2019.

[7] Zhao Tian, Yu-Lin Wei, Wei-Nin Chang, Xi Xiong, Changxi Zheng,
Hsin-Mu Tsai, Kate Ching-Ju Lin, and Xia Zhou. Augmenting indoor
inertial tracking with polarized light. In Proceedings of the 16th Annual
International Conference on Mobile Systems, Applications, and Services,
MobiSys ’18, page 362–375, New York, NY, USA, 2018. Association

(a) floor1 (b) floor4

Fig. 7: Estimated orientations and trajectories for large-scale floor.

TABLE VI: Evaluation results for each gait: walking, slow-
walking, and running.

Metrics Gait API LPF EKF RGNet

RAE [deg]
Walking 33.38 34.06 32.05 23.11

Slow-walking 8.57 8.82 8.77 7.66
Running 11.57 26.97 12.64 18.05

TABLE VII: Breakdown time for each gait in training data.

Walking Slow-walking Runing

Time [sec] 8681 4251 3731

for Computing Machinery.
[8] Zheng Yang, Chenshu Wu, Zimu Zhou, Xinglin Zhang, Xu Wang, and

Yunhao Liu. Mobility increases localizability: A survey on wireless
indoor localization using inertial sensors. ACM Comput. Surv., 47(3),
April 2015.

[9] Katsuhiko Kaji, Masaaki Abe, Weimin Wang, Kei Hiroi, and Nobuo
Kawaguchi. Ubicomp/iswc 2015 pdr challenge corpus. In Proceedings
of the 2016 ACM International Joint Conference on Pervasive and
Ubiquitous Computing: Adjunct, UbiComp ’16, page 696–704, New
York, NY, USA, 2016. Association for Computing Machinery.

[10] Shun Yoshimi, Kohei Kanagu, Masahiro Mochizuki, Kazuya Murao,
and Nobuhiko Nishio. Pdr trajectory estimation using pedestrian-space
constraints: Real world evaluations. In Adjunct Proceedings of the
2015 ACM International Joint Conference on Pervasive and Ubiquitous
Computing and Proceedings of the 2015 ACM International Symposium

TABLE VIII: Evaluation results for each device position:
handheld, handbag, and pocket.

Metrics device position API LPF EKF RGNet

RAE [deg]
Handheld 83.65 88.67 82.57 34.70
Handbag 39.58 42.38 39.55 31.14
Pocket 12.89 67.45 16.41 10.40

TABLE IX: Evaluation results for large-scale floor.

Metrics API LPF EKF RGNet

RAE [deg] 22.69 17.66 18.72 13.48
ATE [m] 7.07 4.91 5.53 3.96

on Wearable Computers, UbiComp/ISWC’15 Adjunct, page 1499–1508,
New York, NY, USA, 2015. Association for Computing Machinery.

[11] Koki Tamura, Hiroto Asai, and Nobuhiko Nishio. Pdr with head swing
detection only using hearable device. In Adjunct Proceedings of the
2019 ACM International Joint Conference on Pervasive and Ubiquitous
Computing and Proceedings of the 2019 ACM International Symposium
on Wearable Computers, UbiComp/ISWC ’19 Adjunct, page 843–848,
New York, NY, USA, 2019. Association for Computing Machinery.

[12] Wonho Kang and Youngnam Han. Smartpdr: Smartphone-based pedes-
trian dead reckoning for indoor localization. IEEE Sensors Journal,
15:1–1, 01 2014.

[13] Kai Kunze, Paul Lukowicz, Kurt Partridge, and Bo Begole. Which way
am i facing: Inferring horizontal device orientation from an accelerom-
eter signal. In 2009 International Symposium on Wearable Computers,

Fig. 8: Data collection with Google Tango.

TABLE X: Evaluation result with NUIOD.

Metrics LPF EKF RGNet

RAE [deg] 43.00 43.87 42.23
ATE [m] 1.42 1.46 1.36

pages 149–150, 2009.
[14] Kai Kunze, Paul Lukowicz, Kurt Partridge, and Bo Begole. Which way

am i facing: Inferring horizontal device orientation from an accelerom-
eter signal. In 2009 International Symposium on Wearable Computers,
pages 149–150, 2009.

[15] Ryoji Ban, Katsuhiko Kaji, Kei Hiroi, and Nobuo Kawaguchi. Indoor
positioning method integrating pedestrian dead reckoning with magnetic
field and wifi fingerprints. In 2015 Eighth International Conference on
Mobile Computing and Ubiquitous Networking (ICMU), pages 167–172,
2015.

[16] Zhi-An Deng, Guofeng Wang, Ying Hu, and Di Wu. Heading estimation
for indoor pedestrian navigation using a smartphone in the pocket.
Sensors, 15(9):21518–21536, 2015.

[17] A. Manos, I. Klein, and T. Hazan. Gravity direction estimation and
heading determination for pedestrian navigation. In 2018 International
Conference on Indoor Positioning and Indoor Navigation (IPIN), pages
206–212, 2018.

[18] Adi Manos, Itzik Klein, and T. Hazan. Gravity-based methods for
heading computation in pedestrian dead reckoning. Sensors (Basel,
Switzerland), 19, 2019.

[19] Hang Yan, Qi Shan, and Yasutaka Furukawa. RIDI: robust IMU double
integration. CoRR, abs/1712.09004, 2017.

[20] Changhao Chen, Peijun Zhao, Chris Xiaoxuan Lu, Wei Wang, Andrew
Markham, and Niki Trigoni. Oxiod: The dataset for deep inertial
odometry. CoRR, abs/1809.07491, 2018.

[21] Hang Yan, Sachini Herath, and Yasutaka Furukawa. Ronin: Robust
neural inertial navigation in the wild: Benchmark, evaluations, and new
methods. CoRR, abs/1905.12853, 2019.

[22] Ronald J. Williams and Jing Peng. An efficient gradient-based algorithm
for on-line training of recurrent network trajectories. Neural Computa-
tion, 2(4):490–501, 1990.

[23] Ilya Sutskever. Training Recurrent Neural Networks. PhD thesis, CAN,
2013.

[24] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Brad-
bury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein,
Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary
DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit
Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An
imperative style, high-performance deep learning library. In H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett,
editors, Advances in Neural Information Processing Systems 32, pages
8024–8035. Curran Associates, Inc., 2019.

[25] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. International Conference on Learning Representations,
12 2014.

[26] Jrgen Sturm, Nikolas Engelhard, Felix Endres, Wolfram Burgard, and
Daniel Cremers. A benchmark for the evaluation of rgb-d slam systems.
pages 573–580, 10 2012.

[27] Samuel L. Smith and Quoc V. Le. A bayesian perspective on general-
ization and stochastic gradient descent. CoRR, abs/1710.06451, 2017.

[28] Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail
Smelyanskiy, and Ping Tak Peter Tang. On large-batch training for deep

learning: Generalization gap and sharp minima. CoRR, abs/1609.04836,
2016.

