
Design and Development Tool for
Telephone-based Network Information System

Yukiko Yamaguchi1, Kazuaki Ito2, Nobuo Kawaguchi1,

Shigeki Matsubara1, and Yasuyoshi Inagaki2
1 Information Technology Center, Nagoya University

2 Department of Computer Science and Engineering, Nagoya University

Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan

ABSTRACT

Trouble management of the huge network is required for 24
hours opening. The usage of an automatic answering machine
is desirable. Since this kind of network information system
requires the various components such as speech recognition,
speech synthesis, natural language processing, telephone
control, networking tools, and so on, it is necessary for the
developers to rebuild the system a number of times. We have
made a GUI-based tool for assisting the developers to design
and rebuild a spoken language system efficiently. We have
implemented the tool in Ruby script, including speech
synthesis and telephone board control function. Using this tool
we have just constructed the first version of the network
information system and began the trial operation.

Keywords: Design and Development Tool, GUI-based Tool,
Spoken Dialogue System, Campus Network, Telephone-based
Information System

1. INTRODUCTION

The campus network of Nagoya University is composed of the
30km optical cable among 120 buildings and 90 subnets. Over
20,000 members (students/staff) rely on the network. When the
user within the campus has any network trouble, he/she makes
a phone call to the campus network section of Information
Technology Center because it is difficult to solve it by oneself.
It is required for the staff of the center to examine the situation
by using networking tools such as “ping” or “snoop”. If they
realize that the campus network has a trouble, they find the
cause and respond to the user. However, when the trouble
happens in the nighttime or on a holiday, it is not possible to
do so. This is the reason that we have decided to develop a
telephone-based network information system which respond to
network queries automatically.

The system aims to receive the telephone calls from users, to
investigate the network situation, and to answer to them. This
kind of system requires various kinds of components like
speech synthesis, telephone control, network investigation. In
developing such a system, it might be required to rearrange the
components a number of times. To do the development

efficiently, a design and development tool in which a designer
can arrange the components with GUI is desirable.

We have implemented a tool for design and development of a
telephone-based information system. The tool provides nine
basic components, such as speech synthesis, telephone control,
and two extension components. A spoken dialogue system can
be designed by defining blocks of components, arranging them,
and connecting them.

In this paper, we describe the design and development tool in
section 2, and its application to a network information system
in section 3.

2. DESIGN AND DEVELOPMENT TOOL

2.1 Design of the Tool

A spoken dialogue system requires the basic components such
as speech recognition and speech synthesis, and also the
special components depending on the task such as the
information retrieval and the network investigation. It is
desirable that the developer can use the speech synthesis and
the speech recognition without the detailed knowledge
concerning them. A GUI-based design and development tool
provides such an environment as mentioned above. The
advantages of the development of a spoken dialogue system
using the tool are as follows:

1. The function of each component becomes clear by
representing each component as a block.

2. The rearrangement of the components becomes easy.

3. The structure of the entire system becomes easy to
understand because the system is graphically designed
using GUI.

Therefore, several design and development tools such as
LOTOS system[1] and CSLU Toolkit[2] have been developed
so far. LOTOS system aims to support developments of city
information retrieval system. In LOTOS system, the
components such as speech recognition, speech synthesis,
condition branch, and database access are expressed as blocks
in GUI, and connected by button or mouse operations. It has an
expression block in which the designer can implement the

function in Visual Basic. However, the function which can be
described in the expression block is limited to operations on
the variables.

CSLU Toolkit is the environment to support development of a
spoken dialogue system. In RAD (Rapid Application
Developer) the designer can create a variety of interactive
programs by dragging and dropping dialogue states onto a
canvas, connecting them, and configuring them to do things
like play audio files, create animated text-to speech, recognize
spoken language, or display images. RAD has also ACTION
state which executes Tcl/CSLUsh code. The program can be
saved in RAD form, and executed only in the environment of
CSLU Toolkit.

Then we decides to make a design and development tool which
can build a system including the telephone control function
and the module that is originally implemented by the designer
and output a module which can be executed independently
from the tool.

2.2 Implementation of our Tool

We have implemented a new tool on Windows 2000 in
Ruby[3]. Ruby is a kind of object-oriented script languages,
which has language specification like Perl and works on
Windows, Linux and Solaris. It has rich libraries such as text
processing, graphics, networking tools and so on. And it is also
possible to call programs implemented in C from Ruby script.
We have implemented a GUI of our tool by using the Ruby/Tk
library. Our tool works on the Ruby interpreter.

Figure 1 shows the main design window of the system. The

windows are composed of the component menu, GUI canvas,
the block list, the system variable list, and the block
information. Initially there is indicated a start block in the GUI
canvas. The design by using this tool consists of the following
three steps, (1) defining blocks as instances of components, (2)
arranging them on the GUI canvas, and (3) connecting them by
mouse operations.

This tool has the following nine basic components. We aim a
telephone-based system, so we use the telephone control
board D/41H and D/4PCI made by Dialogic and implemented
its control components in Ruby.

Playback: Play back voice from PCM format data via the
telephone board. The designer can specify the following
parameters, the upper limit of play back time, the interruption
allowance, the branching condition to following block.

Speech Synthesis: Produce voice from Japanese text. We use
Document Talker by Fujitsu. The designer can embed variables
in Japanese text to be generated. The variables may be given
appropriate value in another block. Therefore, the utterance
can be changed dynamically by combining with other blocks.

Speech Recognition: Convert telephony voice to Japanese. We
have not had the speech recognition function yet. Speech
Recognition block can save the input voice in PCM format.

DTMF Input: Receive a DTMF(Dial Tone Multi Frequency)
input and store it in a parameter. The designer can specify
acquisition number of digit, the upper limit of the acceptance
time, and the branching condition to following block.

Fig. 1 Design Window

Conditional Branch: Describe conditions to jump to another
block. The designers use this block when the branch condition
is complex or they want to express the conditional branching
explicitly.

Jump Control: Specify the next block name directly. This
block can be used when the designer cannot specify the next
block by mouse because the system is large-scale.

Module Call: Call a module which was already constructed.

Telephone Standby: Initialize the telephone board and wait
for a telephone call. The designer can specify the upper limit
of waiting time.

Telephone End: Hang up phone.

The tool also provides the following two enhancing
components. These enhancing components enable the function
which is made by the designer originally to be treated by the
same interface as a basic component.

Script: As a Ruby script, the designer can describe a peculiar
function like database exploration and network investigation,
etc. The Ruby script is preserved as string data, and will be
evaluated at the execution time.

New Class: New class of the operation object. The designer
can produce a new component.

Fig. 2 Specifying of DTMF Input Block

The blocks which construct the spoken dialogue system are
achieved by selecting the component and specifying the
configuration. Figure 2 shows an example of defining a block
of DTMF Input component. The designer specifies the block
name, the variable name in which the DTMF input is stored,
and the condition to quit DTMF input. For the designer who
does not have knowledge concerning the DTMF Input, several
typical conditions are prepared. So the designer only has to
select one of them on GUI and set a numerical value. In order
to specify the following processes, the designer selects the next
block in the GUI canvas by mouse operations and specifies the
condition in Ruby statement. At this time, the block name is
automatically acquired.

The block defined like above is expressed internally by the
following three objects.

Information Object: name of the block, type of the block,
link to the next block and its condition, etc.

GUI Information Object: the position on the GUI canvas.

Operation Object: the script describing the function of the
block.

These objects are instances of the individual class of each
component which is inherited the super class that has the
common function to all components. Figure 3 shows the
relation between the class and the object.

Fig. 3 Relation between Class and Object

The information object not only maintains the specified
configuration as shown in Figure 2 but also works as the kernel
of the designed system. It has the method to get the operation
object and the GUI information object and controls the flow of
the processing of the spoken dialogue system. Figure 4 shows
the flow. By the method of the information object, the function
of the block described in the operation object is executed.
From the execution result, the branching condition is judged in
the information object, and the processing advances to the
following block. The system designed by using this tool starts
the processing from the start block, and in each block the
processing is similarly done while the next block is set.

Fig. 4 Flow of Processing of the Designed System

By separating the execution part as an operation object from
the control of the flow, the utilization of the extension facility
becomes easy. As for the script component, the operation class
has the function that evaluates the character string as Ruby
script. The script described at the block definition is preserved
as character string data in the information object, and will be
evaluated at the execution of the operation object. As for the
class component, when the block is defined, the designer
specifies the original operation class and the block has the
operation object as a instance of the original class. The
designer can define the operation class originally or enhance
the operation class of the other component.

In the development of the spoken dialogue system by using our
tool, the designer can check how the system works under two
kinds of mode, test mode and execution mode. In the test mode,
the designed system executes without actual peripheral I/O.
For example, a DTMF Input block gets the input from the
keyboard instead of the input from DTMF. Therefore each
operation object has two kinds of the operation.

The tool can output the Ruby script which realizes the
designed spoken dialogue system and the Postscript file which
describes the composition of blocks on the GUI canvas. The
Ruby script works only on the tool presently.

3. DEVELOPMENT OF NETWORK INFORMATION
SYSTEM

3.1 Construction of Network Information System

The campus network of Nagoya University has a tree topology.
This means that the network becomes unavailable when the
power supply stops at another building. And as the firewall of
campus LAN intercept some kinds of packet from the outside
of campus, the user who is using a host in campus network via
ISP does not have any investigation method at the situation
inaccessible to the host.

Figure 5 shows the notion of the network information system.

A user who has a network trouble makes a phone call to the
system, and according to its voice, selects the following
service.

1. Information service which offers the schedule of
network stop due to network maintenance/construction
or power supply stop.

2. Investigation service which examines the network
situation.

3. Message service which records a message to the campus
network center.

Fig. 5 Network Information System

Figure 6 shows an example of designing of the network
information system by using our tool. The system keeps the
standby state until receiving a telephone call, and then sends
the guidance voice via telephone. The system switches to the
block determined according to the DTMF input which the user
selects.

When the Information service is selected the system reads
network maintenance/construction information from a file and
outputs the information voice generated by speech synthesis
module.

In the network investigation service, the user inputs IP address
by DTMF input. Then the system verifies IP address,
investigates the reachabilites from the system to the address
and from the system to typical Web site in the Internet.

When the messages service is selected, the system preserves
the utterance of the user, and sends a mail to the network
managers to notify to receiving the message.

At the end, the user is requested to answer a questionnaire
asking about his/her evaluation of the system.

Fig. 6 A Design of Network Information System

Table 1 Composition of the Blocks

Type of block Number of blocks

Start 1

Speech Synthesis 17

DTMF Input 5

Voice Recording 1

Telephone Standby 1

Telephone End 1

Jump Control 1

Script 5

We have constructed the Network Information System from
the 32 blocks. Table 1 shows the composition of the 32 blocks.
The speech synthesis blocks output the voice of the guide of
the service, the announcement of the network
maintenance/construction information, and the report of the
network investigation result, etc. The DTMF Input blocks get
the selection of the service, IP address, the questionnaire. And
we had to implement the following five peculiar function in
the script block.

Verification of input IP address

Network investigation by ping

Acquisition network construction information from file

Mail notification to the network manager

Total of questionnaire

While we constructs the system by using the tool actually, we
realize that it becomes easy to design and to construct the
system, and it is helpful for us to be able to examine the
structure of the system while designing. Moreover, it is easy to
deal with the changes of specification through replacements
and substitutions of blocks. On the other hand, it is annoying to
set the branching condition in every block.

3.2 Trial Operation of the System

We set up the network information system in Information
Technology Center of our university, and began the trial
operation. By this trial operation, it has been realized that the
system hangs up when the telephone is unexpectedly cut.
Therefore we added the function to specify the return block
when the telephone is cut at any point of the system. This trial
in continuing now, and digs up the problem.

4. CONCLUSION

This paper has described our object-oriented design and
development tool for the telephony system. We can design a
spoken dialogue system which is combined with nine kinds of
basic components and two kinds of enhancing components by
using GUI. We can also test and execute it. The tool can output
not only Ruby script file which describes the system, also
PostScript which describes GUI canvas. However, at present
the speech recognition module is not built in and the output
Ruby scripts work only on the tool. We continue our
researches to overcome these problems.

Using this tool we have just constructed the first version of the
network information system. The system can investigate the
network reachability from the system to the specified IP
address, announces the network stop information and records
the message to the network manager. We actually set up the
system in Information Technology Center, Nagoya University,
and begin the trial operation. We are going to improve the tool
and the network information system examining the result of
this trial operation.

References

[1] Tomas Nouza, Jan Nouza “Graphic platform for designing
and developing practical voice interaction systems”, Proc. of
Eurospeech 2001, pp.1287-1290, (2001)

[2] http://cslu.cse.ogi.edu/toolkit/

[3] http://www.ruby-lang.org

