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Abstract. Bus transportation service is more influenced than other
public transport by various factors such as traffic congestion, weather
condition, number of passengers, traffic signals, and so on. These factors
often cause delay and the users may feel inconvenience while waiting at
the bus stop. Few previous studies analyzed the relationship between op-
eration situations and multiple factors by visualization. Thus, we propose
an arrival time estimation method and a visualization model. The arrival
time estimation model dynamically updates the accuracy by estimating
method using a combination of multiple regression model and Kalman
filter. The visualization model analyzes relationships between delay and
factors. The goal of this study is to realize a society where people can
use the bus more comfortably.

Keywords: Bus arrival information system, Multiple regression model, Kalman
filter, Visualization

1 Introduction

Many people use public transport bus service. According to a survey by the
Ministry of Land, Infrastructure, Transport and Tourism[1], in Japan, about
12 million people use it every day. Recently, traffic data is collected by various
systems[2], for example bus arrival information system. This system gets bus
information using GPS: arrival or departure time, traveling locations (latitude
and longitude), etc. Besides, the number of passengers and the behavior of the
driver are also recorded. On the other hand, bus operation situations are more
influenced than other public transport by traffic congestion[3], weather condi-
tion[4], number of passengers[5][6], traffic signals[7], and so on. These factors[8]
are related to delay and the motion of buses changes complicatedly[9][10]. Many
services inform the users of departure from a bus stop[11][12], but few services
provide specific estimated arrival or delay times. Few previous studies analyzed
the relationship between operation situations and multiple factors by visualiza-
tion. The bus is delayed, and they may feel inconvenience while waiting at the



2

Fig. 1: Outline of the proposed system.

bus stop. Thus, we propose an arrival time estimation method and a visualiza-
tion model. “EMRF (Extended Multiple Regression Filter) model”: The arrival
time estimation model dynamically updates the accuracy by estimating method
using a combination of multiple regression model and Kalman filter. Multiple
regression model estimates the trend in advance and Kalman filter updates the
estimation to the optimal state based on it in Figure 1. As a feature of this
method, the closer the bus is to the terminal station, the better the accuracy is
improved. “Bus Tapestry”: The visualization model analyzes relationships be-
tween delay and factors. It creates a heat map of operation situations (delay or
premature) and adds bus stop positions, signal positions, and bus traffic data.
We can visually find factors related to delay. The goal of this study is to realize
a society where people can use the bus more comfortably.

2 Literature Review

2.1 Multiple Regression Analysis

Multiple regression analysis is a liner model and derives the dependent variable
Y using multiple independent variables Xi(i = 0, 1, · · ·) by Equation 1 as follows:

Y = a0 + a1X1 + · · ·+ aiXi (1)

where, ai is a coefficient calculated for each independent variable. In the study
by Patnaik et al[13], dependent variable was estimation time taken between bus
stops. Independent variables were factors to influence delay, like a time required
for timetable, a distance between bus stops, a number of passengers, the time
to open and close the door, and so on. The estimation by this model was highly
accurate. However, multiple regression analysis is a static estimation based on the
past data and does not considers that passengers increase due to rainy weather
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and events holding near the bus top. Therefore, it difficult to respond to such a
real-time changing environment and present the arrival estimated time to users.

2.2 Kalman Filter

Kalman filter is a powerful mathematical tool that can estimate the future states
of variables even without knowing the precise nature of the system modeled. In
the study by Chen et al[14], the time required in the next interval was dy-
namically estimated based on the time required of the timetable and informa-
tion accumulated form the starting station. Although Kalman filter can process
information including errors and estimate dynamically, accurate estimation is
difficult when a bus stop interval is characteristic.

3 Model Development

3.1 Arrival Time Estimation

EMRF model consists of multiple regression model and Kalman filter. Before
departure, multiple regression model estimates changes in inputs, and after de-
parture, Kalman filter estimates dynamically from the difference between the
measured value and the estimated value based on the preliminary estimation.

First, we explain the multiple regression analysis in this study. Dependent
variable is estimation time taken between bus stops[13]. Independent variables
are factors to influence delay[15], like bus stop sections, delay in front of n
stations, time zone, the day of the week, time required for timetable, and number
of passengers. The delay is defined as the difference between the required time
for timetable and the actual required time. For the time zone, Early Morning
is defined until 7:00, Late Morning is defined from 8:00 to 10:00, Early Noon is
defined from 10:00 to 13:00, Late Noon is defined as from 13:00 to 17:00, Evening
is defined from 17:00 to 19:00, and Night is defined after 19:00. For the number
of passengers, the number of people getting on the bus is compared with the
number getting off, and the higher number is recorded.

Secondly, we describe our Kalman filter in Figure 2. Based on the estimation
of the multiple regression model, Kalman filter estimates the required time for
each bus stop interval. The end point is defined as bus stop N . At arbitrary
bus stop k, EMRF model estimates the times required for bus stop intervals k
– (k + 1), n – (k + 2), · · ·, ,k – N . We input values estimated by a multiple
regression model as the initial state of the system. Specifically, for k = 1, a
estimated value was calculated using past data. For k > 1, the model calculates
the real time differences (delay or premature) using the estimated value for bus
stop interval (k−1) – N together with the timetable were used to calculate, and
it inputs the results that are re-estimated using the multiple regression model.
After the bus leaves the starting station, the model updates the system status
and estimated value each time it arrives at the bus stop and repeats this motion
until it reaches the end point. By repeating the update, it is possible to correct
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even if the estimated value and the actual measured value are different from
each other. Additionally, as the bus approaches the end point, the accuracy of
the estimation can be improved.

In general, the Kalman filter estimates the state of the system at time (k+1)
using the state equation based on the previous state by Equation 2 as follows:

xk+1,j = Φk+1xk,j + uk +Wk, j (2)

where, xk+1,j is the state of the system at time (k + 1), Φk+1 is the state-
transition model, uk is the state vector, and Wk, j is noise. We use a multiple
regression model (Equation 1) instead of the state vector uk in Equation 2. The
relationship between an observation and a state variable is expressed by the
observation equation of Equation 3.

zk = Hkxk,j + vk,j (3)

where, Hk is the observation model and vk,j is noise. We define the state variable
xk,j as the estimated time Ek,j and the real time required Rk in Equation 4 as
follows:

xk,j = (Ek,j , Rk) (4)

Where, Tk,j is the total value from arbitrary bus stop k to the bus stop j and
Rk is the total value from the starting station to the bus stop k.

Fig. 2: Outline of the proposed method.

3.2 Visualization

Bus Tapestry creates a heat map of operation situations (delay or premature)
and adds bus stop positions, signal positions, and bus traffic data. The vertical
axis is the time zone, the horizontal axis is the distance from the starting to the
ending bus stop and each position is the accumulated distance.
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(a) In case of bus stops and signal.

(b) In case of bus.

Fig. 3: Definition of interval and total distance.

First, we explain how to calculate the data. Our visualization expresses op-
eration situations by the difference between the actual time required and the
required time. The value is positive when the bus is later than the timeline, and
negative when the bus is earlier than the timeline. The route distance is the total
value based on the bus stop and the location information of the signal (latitude
and longitude) in Figure 3a. Our method calculate the interval distances dn+1

from the xn to xn+1 using each position information. The total distance xn+1 is
the sum of their values in Equation 5 as follows:

xn+1 = xn + dn+1 (5)

In this study, our method does not take account of the curve of the road, etc. We
did not calculate from data by the bus arrival information system because there
might be some error in it. Similarly, The travel distance of the bus is also the
sum of the interval distances between the locations travelled in Figure 3b. For
the travel distance, the location of the bus stop is the point where the departure
information was recorded.

Secondly, we describe how to visualize the data. Our method visualizes op-
eration situations and the signal position using our created data. The heat map
represents operation situations (delay or premature) on the vertical axis is the
time zone(hourly) and the horizontal axis is the distance(km). The horizontal
axis expresses the distance between bus stops by putting the same data every
0.01 km within each bus stop interval. We add the signal position data (mileage)
and make the number of traffic signals between routes visible. Consequently, we
can analyze the influence of the signal between bus stops and operation situa-
tions of each time zone. Furthermore, we can evaluate operation situations in
more detail by adding the location information of each bus to the visualized
data.
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4 Data Collection

In this study, data was collected from bus arrival information system. The
recorded area is in Aichi Prefecture and it includes information of position, time,
route, bus stop, and so on. This data was provided by Transportation Bureau
City of Nagoya[11] and Meitetsu Bus Company Limited[12] through Location
Information Service Research Agency(Lisra)[16]. The former data was recorded
when arriving and departing the bus stop and when communicating every 30
seconds. The range of data collection was for December 13-22, 2014. It has 1030
buses, 3784 bus stops and 664 routes. The latter data was recorded only when
departing the bus stop. The range of data collection was for July 1-15, 2016 and
from January through October 2017. It has 710 buses, 1539 bus stops and 523
routes. We have number of passengers on Meitetsu Bus Company Limited. In
addition, we point each position of traffic signals on the target bus routes.

5 Analysis of Results

5.1 R-squared by Multiple Regression Analysis

The results of a multiple regression analysis are shown in Figure 4. The data is
from Meitetsu Bus Company Limited and the range of it is for March 1-31, 2017.
For comparative purposes, R-squared for Nagoya City Bus data are collected in
Table 4. The range of used data is for December 13-19, 2014. R-squared indicates
how well independent variable accounts for the variability of another, dependent
variable. The value of R-squared ranges from zero to one, with values closer to
one indicating a lower degree of relative error. The highest R-squared value was
0.90. However, since coefficients had abnormally large values like 5.86 × 1011,
multiple regression analysis could not be performed adequately. This is because
the route contains 25 bus stops, and as such there are too many independent
variables. On the other hand, the smallest R-squared value is 0.46. It seems to
be caused by irregular congestion in a bus stop interval. The average value of
Meitetsu Bus was 0.69 and close to the average value of Nagoya City Bus (0.76).
However, the value of Meitetsu Bus was slightly lower than that of the Nagoya
City Bus Since The number of data on Meitetsu Bus was smaller than that on
Nagoya City Bus. data of Nagoya City Bus was recorded when arriving and
departing the bus stop and when communicating every 30 seconds, but data of
Meitetsu Bus was recorded only when departing the bus stop. The relationship
between R-squared and number of bus stops is shown in Figure 5. R-squared is
0.0053 and there was no correlation between that of Multiple Regression Analysis
and number of bus stops in Figure 5.

5.2 Accuracy Verification by Changing the Amount of Data

We verified how the change in the amount of data affects the accuracy of es-
timation by the multiple regression model, using the data from Meitetsu Bus
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Fig. 4: R-squared for Meitetsu Bus.

Company Limited. The Compared data were data for 14 days (July 1-14, 2016),
101 days (July 1-14, 2016 and from January to March 2017), and 101 days ex-
cluding the abnormal values. The estimated date is July 15, 2016. We removed
the abnormal values using the interquartile range. We calculated R-squared by
comparing estimated and actual values for route 9 (Figure 4) in Table 2. Ta-
ble 2 shows the value of R-squared increased as the number of data increased.
Additionally, excluding the abnormal values further improved the accuracy of
estimation.

Table 1: R-squared for Nagoya City
Bus.

RouteID R-squared

8415 0.79

8471 0.76

8784 0.69

8921 0.58

8939 0.80

8990 0.80

9014 0.80

9015 0.88

Average 0.76

Table 2: Variation of R-squared in
route 9.

The type of data R-squared

14 days 0.34

101 days 0.44

excluding 0.55
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Fig. 5: The relationship between R-squared and number of bus stops.

5.3 Visualization

We used the data from Transportation Bureau City of Nagoya on December 16
and 21, 2014. The result of our visualization is presented in Figure 6. The black
dots are the running position of the bus, the red dots are the bus stop position,
and the dotted lines are the signal position. The white parts in the heat map are
the time zone during which the bus was not running. Figure 6a and Figure 6b
are other day of the same route and show a similar delay condition as a whole.
However, in the range of bus stop 5 to bus stop 6, we find that the delay on
Sunday is greater than those on Tuesdays from 16:00 to 17:00. Figure 6a and
Figure 6c are the other route on the same day. They show the route 8471 has
a large delay near three stations before the end point compared to the route
8415. Moreover, in Figure 6a, the signal between bus stop 2 and bus stop 3
does not significantly affect the delay because there are few points before it.
On the other hand, the signal between stop11 and stop12 is likely to affect the
delay because there are many points before it. Thus, we can find visually the
relationship between delay and factors by our visualization.
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(a) Visualization in route 8415(Tue).

(b) Visualization in route 8415(Sun).

(c) Visualization in route 8471(Tue).

Fig. 6: Result of visualization.
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6 Evaluation of the Model

We used the data from Meitetsu Bus Company Limited for March 1-31, 2017 in
route 9. The estimated date is January 31 (Tue), 2017. The model was created
for 30 days, excluding the estimated date. For the estimated date, the number
of passengers and delay in front of n stations were the average of 30 days.

6.1 Comparison by Estimation Errors

For schedule 10430, estimation errors by Multiple regression model and our
model are presented in Figure 7. Schedule 10430 is a bus running from 20 to
21 hours. estimation errors are the difference between the estimated value and
the actual value. It is a positive value when EMRF model estimates longer than
the actual value, and it is a negative value when the model estimates shorter
than the actual value. Figure 7 shows that estimation errors is smaller than that
of Multiple regression model and EMRF model corrects the estimation.

Fig. 7: Estimation error in route 9, Schedule: 10430.

6.2 Comparison by Values of RMSE

We evaluate the models using the value of RMSE (Root Mean Squared Error)
in Equation 6 as follow:

RMSE =

√√√√ 1

N

N∑
i=1

(yi − ŷi)2 [s] (6)
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Where, N is the number of bus stops intervals, yi is the actual value of i-th bus
stops interval, and ŷi is the estimated value of i-th bus stops interval. RMSE
is an evaluation method that shows how the estimated value is separated from
the actual value. The closer the value of RMSE is to 0, the more accurate the
estimation. For schedule 10400, the value of RMSE by Multiple regression model
and our model are presented in Figure 8. Schedule 10430 is a bus running from
10 to 11 hours. The estimated date varied from March 1 to 31. The horizontal
axis is the bus stop estimated and the vertical axis is the value of RMSE. Figure
8 shows that the value of RMSE by our model is smaller than only by multiple
regression model. Especially at bus stop 2, the estimation was largely corrected.

Similarly, for all schedules, the average value of RMSE are presented in Figure
9. This figure shows that the value of RMSE was smaller in our model even in
the case of the average value by the data of one month. Therefore, it is assumed
that our model can improve the accuracy of estimations.

Fig. 8: The value of RMSE in route 9, Schedule: 10400.

7 Examination of Presentation Method

We propose a method of presenting arrival time including estimation errors.
Using the standard deviation, the estimated required time is calculated with
some leeway, and presented to users with an accuracy of about 95% in Equation
7 as follows:

E′ = E ± 2SD(E −R) (7)

where, E′ is required time including estimation errors, E is estimated required
time, and R is actual required time. Showing users the shortest arrival time



12

Fig. 9: The average value of RMSE.

allows them to broaden their choice of actions in Figure 10. For example, “ If
this time the earliest possible, let’s go to a convenience store ”, or “ Since there
is no need to hurry, let’s walk slowly ”, etc. Presenting the latest arrival time
has the effect of alleviating the anxiety of, “ How long will I have to wait at
the bus stop? ” Our method can also show the estimated arrival time at the
destination stop and inform the users of it because our model is possible for all
bus stop intervals. Presenting specific estimated arrival times in this way gives
users a more accurate idea of operation situations, making it easier to act.

Fig. 10: How to present to users.

Moreover, in order to know the view of the users on presentation method of
the estimated arrival time, we investigated using the questionnaires. This period
was for January 29-30, 2018. We got responses of 184 people using SNS and the
number of valid responses was 169 people. About how much to refer according
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to estimation errors, the users envaulted estimation errors in 5 stages : “Never”,
“Hardly ever”, “Neutral”, “Some of the time”, “All of the time”. When the esti-
mation errors is within 1 minute, “All of the time” accounted for about 90 % of
the total. When the estimation errors is within 1-5 minutes, “All of the time”,
“Some of the time” or “Neutral” accounted for about 90 % of the total. There-
fore, it is assumed that the standard of estimation errors is within 5 minutes.
Figure 11 shows the results of the questionnaire about the presentation method.
There were 4 kinds of Sample screens : “Estimated delay time”, “Estimated ar-
rival time”, “Estimated time remaining”, “Graphical presentation”. “Estimated
arrival time” and “Estimated time remaining” each accounted for about 40 %
of the total. Thus, we found that the users prefer display of arrival time than
delay time. It is assumed that the users can use comfortably the application in
which they can select presentation method because the answers were divided.

Fig. 11: The result of the questionnaire about the presentation method.

8 Conclusion

In this study, we proposed EMRF model and Bus Tapestry. EMRF model is a
dynamic model for arrival time estimation combining multiple regression model
and Kalman filter. We verified the accuracy of the estimation using R-squared
and evaluated EMRF model by error or RMSE. The results showed that the
average of estimation errors improved from 186 seconds to 17 seconds. We also
presented estimated arrival time including estimation errors. We investigated
using the questionnaires and got 184 answers to the presentation method. The
results showed that the standard of estimation errors was within 5 minutes and
the users prefer display of arrival time than delay time.

Bus Tapestry is a method of visualization for analyses operation situations.
We can visually compare operation situations of other days or routes and find
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the same or difference features. Additionally, we can see the relationship between
delay and signal in more detail. In the future, it may be possible to estimate ab-
normal values and use machine learning. Furthermore, to start an estimating
service, it is necessary to conduct a demonstration experiment and collect opin-
ions of users.
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