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Abstract
Understanding, modeling, and predicting human mobility
patterns in urban areas has become a crucial task from the
perspectives of tra!c modeling, disaster risk management,
urban planning, and more. HuMob Challenge 2023 aims to
predict futuremovement trajectories based on the pastmove-
ment trajectories of 100,000 users[1]. Our team, "uclab2023",
considered that model design signi"cantly impacts training
and prediction times in the task of human mobility trajec-
tory prediction. To address this, we proposed a model based
on BERT, commonly used in natural language processing,
which allows parallel predictions, thus reducing both train-
ing and prediction times.

In this challenge, Task 1 involves predicting the 15-day
daily mobility trajectories of target users using the move-
ment trajectories of 100,000 users. Task 2 focuses on pre-
dicting the 15-day emergency mobility trajectories of target
users with data from 25,000 users. Our team achieved accu-
racy scores of GEOBLEU: 0.3440 and DTW: 29.9633 for Task
1 and GEOBLEU: 0.2239 and DTW: 44.7742 for Task 2[2][3].
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1 INTRODUCTION
Understanding, modeling, and predicting human mobility
trajectories in urban areas are crucial tasks with applica-
tions spanning tra!c modeling, disaster risk management,
and urban planning. However, due to privacy concerns, open-
source, large-scale mobility datasets are insu!cient, mak-
ing accuracy comparisons with alternative methods chal-
lenging. Thus, the HuMob Challenge 2023 was convened
to develop and test methods for predicting mobility trajec-
tories using the provided open-source dataset. This chal-
lenge speci"cally aimed to forecast future mobility trajec-
tories based on the past movements of 100,000 users.

Within this challenge, two tasks were de"ned. Task 1 is
to predicting the remaining 15 days of mobility trajectories
for 20,000 target individuals using 80,000 individuals’ 75-
day historical mobility data and the 60-day data of the tar-
get individuals. Task 2 is to forecast the remaining 15 days
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of emergency mobility trajectories for 2,500 target individ-
uals using the 60-day daily activity and 15-day emergency
mobility data of 22,500 individuals.

In the context of mobility trajectory prediction tasks, the
design of the model signi"cantly a#ects training and pre-
diction times. Therefore, when creating models, consider-
ations must encompass both accuracy and execution time.
With larger datasets, Transformer-based models can reduce
execution times compared to RNN or LSTM-based models,
which perform sequential predictions. In many time-series
prediction tasks, RNN and LSTM-based seq2seqmodels have
been commonly employed[4]. However, these models often
fall short in capturing long-termmobility trends and require
extensive learning time due to their sequential prediction
nature. These issues can be addressed by leveraging Trans-
formers, capable of long-term time-seriesmodeling and par-
allel processing [5].

Consequently, we developed a model based on BERT[6]
extended with Transformer, both of which are natural lan-
guage processing models, to reduce training time and en-
able long-term time-series modeling. We refer to this model
as the "Location Prediction BERT(LP-BERT)". The LP-BERT
achieves reduced training and prediction times by e!ciently
parallelizing predictions for all location cells based on in-
dividual mobility sequences. As a result of employing the
LP-BERT, we achieved accuracy scores of GEOBLEU: 0.3440
and DTW: 29.9633 for Task 1, and GEOBLEU: 0.2239 and
DTW: 44.7742 for Task 2.

2 RELATEDWORK
When predicting humanmobility trajectories, temporal and
spatial information becomes paramount. According to Yan
et al[7], it is presented that embedding vectors that re$ect
di#erent contexts based on the purpose of visiting func-
tional locations prove advantageous in prediction. Conse-
quently, the Context and Time aware Location Embedding
(CTLE) was proposed to adaptively generate location em-
bedding vectors tailored to contexts. Furthermore, accord-
ing to Dejiang et al[8], it seeks to uncover movement pat-
terns between functional zones and forecast people’s sub-
sequent moves within minutes or hours. The paper sug-
gests integrating spatial-temporal in$uences into the LSTM
model organically, presenting the Spatial-Temporal Long-
Short Term Memory (ST-LSTM) model. According to Qiang
et al[9], recognizing the signi"cance of temporal interval in-
formation inmobility trajectory prediction, the proposal ex-
tends beyond local temporal context and advocates formod-
eling periodic time context as well. When creating the mod-
els utilized in this challenge, inspiration was drawn from
these models presented in the aforementioned papers.

Figure 1. Dataset shape in task1

Figure 2. Dataset shape in task2

3 DATASET DESCRIPTION
In this challenge, a dataset of mobility spanning 75 days for
100,000 individuals within a major metropolitan area was
provided. The target area was subdivided into 500! × 500!
cells, spanning a grid of 200 × 200. Individual movements
were discretized at 30-minute intervals and 500m grid cells.
We assigned Location IDs to each cell for prediction pur-
poses.

Task 1 involved predicting the remaining 15 days of mo-
bility trajectories for 20,000 target individuals using 80,000
individuals’ 75-day mobility data and the 60-day data of the
target individuals. Task 2, on the other hand, required fore-
casting the remaining 15 days of mobility trajectories in an
emergency for 2,500 target individuals using 60-day daily
activitymobility data, 15-daymobility data in an emergency,
and the 60-day daily activity mobility data of 22,500 indi-
viduals. The speci"cs of the term "emergency" were not dis-
closed. The dataset columns were structured as follows.

• UserID
• Date(0 ∼ 74)
• Time(1 ∼ 48)
• (x , y) coordinates of stay cell

The dataset’s structure is as shown in Figure 1 and Figure
2. In Task 1, when excluding the period of interest, the total
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Figure 3. LP-BERT

number of records amounted to 107,204,010. The user with
the highest record count possessed 3,497 records, while the
user with the fewest had 463 records. Likewise, in Task 2,
the total record count was 28,929,120, with the user holding
the highest number of records totaling 3,293 and the user
with the least amounting to 427 records. It is worth noting,
however, that themobility data is not captured continuously
for all time periods, and there are instances of unobserved
time intervals.

4 METHODOLOGY
Our team has developed the "LP-BERT", based on BERT, to
capture long-term mobility trends. The schematic represen-
tation of the LP-BERT is shown in Figure 3. Within the LP-
BERT, we de"ne the number of layers in the Transformer
encoder as "layersnum" and the number of attention heads
as "headsnum."

In the input phase to the encoder, we employ an embed-
ding layer to process date, time, Location ID, and the time
di#erence from the previous movement, summing them to-
gether. From here, time di#erencen will be called timedelta.
The inclusion of timedelta in the input is driven by the recog-
nition that mobility data is not uniformly available across all
time periods, and we consider the time timedelta from the
previous movement to be a crucial piece of information. Ad-
ditionally, as date and time information is provided for the
prediction period, we consider them as valuable inputs for
prediction.

The training process, shown in Figure 4, involves ran-
domly masking only Location IDs for a consecutiveα-day
period from each user’s complete mobility sequence. In this

Figure 4. How to mask Location IDs

process, User ID is not used. Given that date and time in-
formation is available for the prediction period, we deem it
unnecessary to mask them during the training phase. Dur-
ing prediction, the task is to predict the masked Location
IDs.

In the LP-BERT, both in the training and prediction phases,
all masked Location IDs are predicted in parallel. This par-
allel processing reduces both training and prediction times.
During prediction, we observed a frequent occurrence of
predicting multiple stays in the same Location on the same
day. To mitigate this, when predicting the same location on
the same day during training, we reduce the probability of
staying at that location by a factor ofβ, reducing the prob-
ability of predicting that location during prediction, thereby
reducing consecutive stay predictions..
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5 VALIDATION RESULT
5.1 Datasets
In preparation for the "nal submission of our task, our team
employed speci"c training data strategies. For Task 1, we
utilized the entire mobility data from day 0 to day 74 for
users with User ID ranging from 0 to 79,999, as well as data
up to day 59 for users with User ID from 80,000 to 99,999.
And for Task 2, we employed the complete mobility data
from day 0 to day 74 for users with User ID ranging from 0
to 22,499, as well as data up to day 59 for users with User ID
from 22,500 to 24,999.

The parameter settings for this endeavor included an em-
bedsize of 128, 200 epochs, and a batch size of 16. Further-
more, we set the masking duration for days as α=15, and
the multiplier for stay probabilities as β=0.9. The model
con"guration featured "#$%&'()! = 4, ℎ%#+'()! = 8.

5.2 Evaluation experiment
In the process of creating our "nal model, our team em-
barked on a thorough comparison of model accuracy em-
ploying various parameters. Additionally, we created amodel
based on BERT to capture long-termmobility trends, andwe
compared its accuracy with LSTM, a widely utilized model
in trajectory prediction. To streamline the evaluation pro-
cess, we focused on 50,000 users, as an exhaustive compar-
ison across all users would have entailed lengthy execution
times. In Task 1, we employed mobility data from day 0 to
day 74 for users with User ID in the range of 0 to 39,999
for training, along with mobility data from day 0 to day 59
for users with User ID ranging from 40,000 to 49,999. The
prediction period for this group was set as day 60 to day
74. In all cases, the number of epochs was uni"ed at 50. We
conducted comparisons for items that were not part of the
model under evaluation, using the same conditions as our
"nal submission model.

For evaluation, we adopted the GEOBLEU and Dynamic
Time Warping (DTW) metrics, as used in this challenge.
GEOBLEU, akin to similarity metrics in natural language
processing, emphasizes local features, with higher values
indicating greater similarity between two trajectories. In con-
trast, DTW is amethod that compares entire trajectories and
gradual adjustments, with smaller values denoting greater
similarity between the two trajectories.

5.2.1 Examining models in LP-BERT.

Parameter tuning. Our team deliberated over the di-
mensionality of date, time, Location ID, and timedelta from
the previousmovement for embedding. Furthermore, we con-
ducted a comparative analysis of the number of layers in the
Transformer model. The outcomes of these considerations
are shown in Table 1.

Changing the embedsize did not result in signi"cant al-
terations in both GEOBLEU and DTW values. Although the

di#erencesweremarginal, it was observed that theGEOBLEU
values were most favorable when %!,%+'-.% = 128, and the
DTW values ranked second best. Consequently, we adopted
%!,%+'-.% = 128 for this con"guration. Additionally, a com-
parison of the number of layers yielded no substantial dis-
tinctions in performance.

Consideration of timedelta. In the LP-BERT used in this
study, we incorporated an input feature that embeds the
timedelta from the previous movement. Table 2 presents the
di#erence in accuracy when this feature was included and
when it was not.

While there was a slight improvement in GEOBLEU ac-
curacy, the DTWaccuracy diminished. Therefore, it appears
that the timedelta from the previous movement was not a
crucial parameter in the prediction process.

Considering how to mask. In this challenge, due to the
extended and continuous 15-day prediction period, our team
believed that a longer masking period during the training
phase would be bene"cial. Furthermore, given the continu-
ous nature of the prediction period, we assumed that main-
taining consecutive masks during the training phase and
providing the task to predict those portions would enhance
accuracy. To test this hypothesis, we compared the results
between the continuous masking and randomly masking
20% of the input sequence during the training phase, as shown
in Table 3.

The results in Table 3 presents that both GEOBLEU and
DTW metrics indicate superior accuracy when continuous
masking is employed. Given the continuous prediction pe-
riod in this task, we can conclude that maintaining consec-
utive masks during the training phase is advantageous.

Considerations for increasing movement rates. Our
team discovered a pronounced trend in the LP-BERT, where
the same locationwas consistently predicted during the fore-
casting stage. Due to the observation that the number of
the types of locations appearing in predictions were fewer
than those in the true data, we implemented an adjustment
during the training phase. Speci"cally, when the model pre-
dicted the same location consecutively during training, we
multiplied the probabilities by 0.9. Table 4 presents the com-
parison between the outcomes with andwithout this adjust-
ment.

The GEOBLEU metric exhibited an improvement as a re-
sult of this adjustment, although DTW accuracy showed a
decline. It is important to note that this adjustment was ap-
plied only to the probabilities of the locations predicted con-
secutively, and this could have potentially introduced un-
natural patterns to the trajectories as a whole.
5.2.2 Comparison with LSTM. Furthermore, our team
created a model using LSTM, a commonly used method in
trajectory prediction, and compared its performance with
the LP-BERT.
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Table 1. Result of parameter tuning

Embedsize Layers
Evaluation index 64 128 256 1 2 3 4

GEOBLEU 0.3111 0.3130 0.3120 0.3076 0.3126 0.3122 0.3130
DTW 34.35707 35.0853 36.0574 34.5410 35.4658 35.1392 35.0853

Table 2. Consideration of timedelta

Implemented Unimplemented
GEOBLEU 0.3130 0.3099

DTW 35.0853 34.8306

Table 3. Considering how to mask

Continuous Random
GEOBLEU 0.3130 0.2817

DTW 35.0853 45.4109

Table 4. Considerations for increasing movement rates

Implemented Unimplemented
GEOBLEU 0.3130 0.2984

DTW 35.0853 33.8231

Like the LP-BERT, we input embeddings of date, time,
Location ID, and timedelta with previous movements, each
in 128 dimensions. During the training phase, we applied
masking to random Location IDs from the end of the time
series movement data for each user. The number of Loca-
tion IDs to mask was speci"ed randomly within the range
of 128 to minlen/4, with minlen representing the minimum
sequence length within a batch. If the minimum sequence
length was less than 128, we used minlen/4 as the number
of Location IDs to mask.

In the LSTM model, both the encoder and decoder were
utilized, and predictions were made sequentially, unlike the
LP-BERT, which performed parallel predictions. Addition-
ally, we used a single layer for the LSTM. The results are
shown in Table 5 and Table 6.

From the results, it is evident that the LSTM model out-
performs the LP-BERT in terms of bothGEOBLEU andDTW.
However, it is important to note that the LSTM model re-
quired more training and prediction times compared to the
LP-BERT, which made parallel predictions. In summary, the
LP-BERT demonstrated faster prediction capabilities, while
the LSTM, which made sequential predictions using a de-
coder, displayed superior prediction accuracy. It is worth

Table 5. Comparison with LSTM

LP-BERT LSTM
GEOBLEU 0.3130 0.3673

DTW 35.0853 20.4769

Table 6. Average learning time per epoch

LP-BERT LSTM
time[seconds] 304 450

mentioning that as the dataset size increased, the Trans-
former’s performance tended to improve. When we utilized
data from 100,000 users for training, the accuracywas higher
than when using data from 50,000 users. Therefore, with a
larger dataset, the LP-BERT might outperform the LSTM in
terms of accuracy.

6 CONCLUSION
In this paper, we proposed a method to reduce both train-
ing and prediction times by using the LP-BERT based on
BERT, capable of parallel predictions, for the HuMobchal-
lenge 2023. While sequential prediction models like LSTM
tend to achieve higher accuracy on large datasets, they de-
mand a signi"cant amount of time for both training and pre-
diction. To address this issue, we employed the Transformer
architecture to enable parallel predictions.Moreover, by align-
ing the masking strategy with the prediction pattern, we
successfully enhanced accuracy. As a result of these enhance-
ments, our "nal scores for Task 1 were GEOBLEU: 0.3440
and DTW: 29.9633, while for Task 2, they were GEOBLEU:
0.2239 and DTW: 44.7742. It is worth noting that we used
only the Transformer’s encoder in this work, but there is
potential to further improve accuracy by incorporating the
decoder in future research.
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