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Chapter 1
Dynamic Arrival Time Estimation Model and
Visualization Method for Bus Traffic

Abstract Bus transportation service is more strongly influenced than other public
transport modalities by various factors such as traffic congestion, weather condi-
tions, number of passengers, and traffic signals. These factors often cause delays,
and users may feel inconvenienced when waiting at a bus stop. Few studies have an-
alyzed the relationship between operational situations and multiple different factors
by visualization. Thus, we propose an arrival time estimation method and a visual-
ization model. The arrival time estimation model dynamically updates the accuracy
via an estimation method using a combination of a multiple-regression model and
a Kalman filter. The visualization model analyzes relationships between delays and
various factors. The goal of this study is to realize a society where people can use
buses more comfortably.

1.1 Introduction

Many people use public transport in the form of bus service. According to a survey
by the Ministry of Land, Infrastructure, Transport and Tourism[13], in Japan, ap-
proximately 12 million people use this service every day. Recently, traffic data have
begun to be collected by various systems[8], for example, bus arrival information
systems. Such systems obtain bus information using GPS: arrival or departure time,
traveling locations (latitude and longitude), etc. In addition, the number of passen-
gers and the behavior of the driver are also recorded. On the other hand, bus oper-
ation situations are more strongly influenced than other public transport modalities
by traffic congestion[12], weather condition[11], number of passengers[6][7], traf-
fic signals[9], etc. These factors[10] are related to delays, and the motion of buses
changes in a complicated manner[4][5]. Many services inform the users of depar-
tures from a bus stop[14][15], but few services provide specific estimated arrival or
delay times. Few studies have analyzed the relationships between operational sit-
uations and multiple factors by visualization. When a bus is delayed, passengers
may feel inconvenienced when waiting at the bus stop. Thus, we propose an arrival
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Fig. 1.1 Outline of the Proposed System.

time estimation method and a visualization model: “EMRF (Extended Multiple Re-
gression Filter) model”. The arrival time estimation model dynamically updates the
accuracy via an estimation method using a combination of a multiple-regression
model and a Kalman filter. The multiple-regression model estimates the trend in ad-
vance, and the Kalman filter updates the estimation to the optimal state based on the
trend in Figure 1.1. As a feature of this method, the closer the bus is to the terminal
station, the better the accuracy. “Bus Tapestry” is the visualization model, which
analyzes relationships between delays and factors. This model creates a heat map
of operational situations (delays or premature arrival) and adds bus stop positions,
signal positions, and bus traffic data. We can thereby visually find factors related to
delays. The goal of this study is to realize a society whereby people can use buses
more comfortably.

1.2 Literature Review

1.2.1 Multiple-Regression Analysis

Multiple-regression analysis is a linear model and derives the dependent variable Y
using multiple independent variables Xi(i = 0,1, · · ·) by Equation 1.1 as follows:

Y = a0 +a1X1 + · · ·+aiXi (1.1)

where ai is a coefficient calculated for each independent variable. In the study by
Patnaik et al[1], the dependent variable was the estimated time taken between bus
stops. Independent variables, such as the time required for the timetable, the dis-
tance between bus stops, the number of passengers, and the time to open and close
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the door, were factors that influenced delays. The estimation under this model was
highly accurate. However, multiple-regression analysis is a static estimation based
on the past data and does not consider increased passengers due to rainy weather
or events being held near the bus stop. Therefore, it is difficult to respond to such a
real-time changing environment and present the estimated arrival time to users.

1.2.2 Kalman Filter

The Kalman filter is a powerful mathematical tool for estimating the future states
of variables even without knowing of the precise nature of the system modeled. In
the study by Chen et al[3], the time required in the next interval was dynamically
estimated based on the time required for the timetable and information accumulated
from the starting station. Although the Kalman filter can process information in-
cluding errors and perform estimation dynamically, accurate estimation is difficult
when a bus stop interval is characteristic.

1.3 Model Development

1.3.1 Arrival Time Estimation

The EMRF model consists of a multiple-regression model and Kalman filter. Be-
fore departure, the multiple-regression model estimates changes in inputs, and after
departure, the Kalman filter performs estimation dynamically from the difference
between the measured value and the estimated value based on the preliminary esti-
mation.

First, we explain the multiple-regression analysis in this study. The dependent
variable is the estimated time taken between bus stops[1]. The independent variables
are factors that influence delays[2] such as bus stop sections, delays ahead of n
stations, the time zone, the day of the week, the time required for the timetable,
and the number of passengers. The delay is defined as the difference between the
required time for the timetable and the actual required time. For the time zone, Early
Morning is defined as until 7:00, Late Morning is defined from 8:00 to 10:00, Early
Noon is defined from 10:00 to 13:00, Late Noon is defined as from 13:00 to 17:00,
Evening is defined from 17:00 to 19:00, and Night is defined after 19:00. For the
number of passengers, the number of people getting onto the bus is compared with
the number getting off, and the higher number is recorded.

Second, we describe our Kalman filter in Figure 1.2. Based on the estimation of
the multiple-regression model, the Kalman filter estimates the required time for each
bus stop interval. The end point is defined as the bus stop N. At a given bus stop k,
the EMRF model estimates the times required for bus stop intervals k – (k+1), k –
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Fig. 1.2 Outline of the Proposed Method.

(k+2), · · ·, ,k – N. We input values estimated by a multiple regression model as the
initial state of the system. Specifically, for k = 1, an estimated value is calculated
using past data. For k > 1, the model calculates the real time differences (delay or
premature arrival) using the estimated value for the bus stop interval (k− 1) – N,
together with the timetable used in the calculation, and it inputs the results that are
re-estimated using the multiple-regression model. After the bus leaves the starting
station, the model updates the system status and estimated value each time it arrives
at the bus stop and repeats this motion until it reaches the end point. By repeating the
update, it is possible to correct the value even if the estimated and actual measured
values are different from each other. Additionally, as the bus approaches the end
point, the accuracy of the estimation can be improved.

In general, the Kalman filter estimates the state of the system at time (k + 1)
using the state equation based on the previous state by Equation 1.2 as follows:

xk+1, j = Φk+1xk, j +uk +Wk, j (1.2)

where xk+1, j is the state of the system at time (k+ 1), Φk+1 is the state-transition
model, uk is the state vector, and Wk, j is noise. We use a multiple-regression model
(Equation 1.1) instead of the state vector uk in Equation 1.2. The relationship be-
tween an observation value zk and a state variable xk, j is expressed by the observa-
tion equation of Equation 1.3.

zk = Hkxk, j + vk, j (1.3)

where Hk is the observation model and vk, j is noise. We define the state variable xk, j
as the estimated time Ek, j and the real time required Rk in Equation 1.4 as follows:

xk, j = (Ek, j,Rk) (1.4)

where Ek, j is the total value from an arbitrary bus stop k to the bus stop j and Rk is
the total value from the starting station to the bus stop k.
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1.3.2 Visualization

Bus Tapestry creates a heat map of operational situations (delays or premature ar-
rival) and adds bus stop positions, signal positions, and bus traffic data. This visu-
alization method attempts to determine and find a tendency of bus delays and their
reasons to use large-scale bus traffic data as a scatter plot. The vertical axis is the
time zone, the horizontal axis is the distance from the starting to the ending bus stop,
and each position is the accumulated distance.

First, we explain how to process the data. Our visualization expresses operational
situations by the difference between the actual time required and the required time.
The value is positive when the bus is later than the timeline suggests, and it is nega-
tive when the bus is earlier than the timeline suggests. The route distance is the total
value based on the bus stop and the location information of the signal (latitude and
longitude) in Figure 1.3.2. Our method calculates the interval distances dn+1 from
Ln to Ln+1 using the information at each position. The total distance Ln+1 is the sum
of their values in Equation 1.5 as follows:

Ln+1 = Ln +dn+1 (1.5)

In this study, our method does not consider the curvature of the road, for example.
We did not process data from the bus arrival information system because these data
might include errors. Similarly, the travel distance of the bus is also the sum of the
distances between the locations traveled in Figure 1.3.2. For the travel distance, the
location of the bus stop is the point at which the departure information was recorded.

Second, we describe how to visualize the data. Our method visualizes operational
situations and the signal position using our created data. The heat map represents
operational situations (delays or premature arrivals), where the vertical axis is the
time zone (hour) and the horizontal axis is the distance (km). The horizontal axis
expresses the distance between bus stops by putting the same data every 0.01 km
within each bus stop interval. We add the signal position data (mileage) and make
the number of traffic signals between routes visible. Consequently, we can analyze
the influence of the signals between bus stops and operational situations of each
time zone. Furthermore, we can evaluate the operational situations in greater detail
by adding the location information of each bus to the visualized data.

1.4 Data Collection

In this study, data were collected from the bus arrival information system. The
recorded area is located in the Aichi Prefecture and includes information on posi-
tion, time, route, bus stop, etc. These data were provided by the Transportation Bu-
reau City of Nagoya[14] and the Meitetsu Bus Company Limited[15] through the
Location Information Service Research Agency (Lisra)[16]. The above data were
recorded when arriving and departing a bus stop and during communications at 30
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[Case of Bus Stops and a Signal.]

[In Case of Bus.]

Fig. 1.3 Definition of interval and total distance.

second intervals. The range for the data collection was from December 13-22, 2014.
This dataset includes 1030 buses, 3784 bus stops and 664 routes. These data were
recorded only when departing the bus stop. The range for data collection was for
July 1-15, 2016 and from January through October 2017. This dataset includes 710
buses, 1539 bus stops and 523 routes. The number of passengers was provided by
the Meitetsu Bus Company Limited. In addition, we indicate each position of traffic
signals on the target bus routes.

1.5 Analysis of Results

1.5.1 Independent Variables and Coefficients of
Multiple-Regression Model

We analyze whether the independent variables assumed in 1.3.1 are necessary and
sufficient manner. First, we add “The amount of precipitation”, “Temperature”, “The
number of signals in the bus stop sections” and “Interval distance” as the indepen-
dent variables of our model. Table 1.1 shows a result of the multiple-regression
analysis on the data for 1 month in March 2017 and 10 months from January to
October 2017 In the multiple-regression analysis with the independent variables in
1.3.1, the coefficient of determination was 0.77 for the one month of data and 0.79
for the 10 months of data. In the multiple-regression analysis using 1.3.1’s variables,
the amount of precipitation was 0.77 and 0.79. Although the coefficients slightly im-
proved due to the increase in the data　 volume, we cannot confirm large changes
due to the addition of independent variables.
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Table 1.1 Independent Variables and Coefficients.

Independent Variables Coefficients (1 month) Coefficients (10 months)
- 0.7715 0.7934

The amount of precipitation 0.7716 0.7935
Temperature 0.7715 0.7934

The number of signals 0.7715 0.7934
Interval distance 0.7715 0.7934

1.5.2 Influence of Data Volume on p Value

Figure 1.4 shows the comparison results for the p value calculated by the multiple-
regression analysis using the independent values of 1.3.1 and 1.5.1. The independent
variables in Figure 1.4 are arranged in descending order of p value for the data
for 10 months. The coefficients of “bus stops interval 1-2”, “Early Morning” and
“Monday” are 0, and the significance level (p value ¡0.05) is represented by a red
dotted line. According to Figure 1.4, there are variables with significantly different
p values for the data for 1 month and 10 months. Specifically, with regard to “The
amount of precipitation”, “Temperature”, some “bus stop interval”, “Time zone”,
“Day of week”, and “Delay in front of 2 stations”, the p value using the data for 1
month did not satisfy the baseline value. These independent variables resulted in less
influence on the required time than the other factors; however, the p values changed
significantly for the 10 months of data, and the p values that met the significance
level increased. We think that this is because although these independent variables
have minimal influence on the required time in the case using the data for one month,
the data for 10 months include the day on which these independent variables work
well. However, some independent variables using data for 10 months exceeded the
level of significance, with the result that “Tuesday”, “Wednesday”, “Thursday”, and
“Friday” had minimal impact. It seems that this was because of the similar operating
conditions on weekdays and weekends. In addition, it was found that this situation
considered more data, and the effectiveness of the independent variable increases.
On the other hand, when using 10 months of data for “The amount of precipitation”,
“temperature”, “number of signals” and “interval distance”, no p value remarkably
increased compared to other p values. Therefore, these independent variables are
thought to affect the required time.

1.5.3 Correlation between the Independent Variables

The added variables of “The amount of precipitation”, “temperature”, “number of
signals” and “interval distance” were found to affect the required time; thus, we
investigate the correlation between the independent variables. We calculate the cor-
relation coefficient R for all independent variables assumed in this study, and we
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Fig. 1.4 p Value of Each Independent Variable.

show the variables with |R| > 0.4 in Figure 1.5. “The delay in front of n stations”
showed a strong correlation overall. This seems to be because the delay at the pre-
vious bus stop influences the delay of the next bus stop directly. There was also
a strong correlation between “The required time” and “Number of signals”. This is
why no significant change was observed in the decision coefficient even when “num-
ber of signals” was added as an independent variable; thus, “the number of signals”
could be one of the factors in setting the required time. In addition, the “number of
signals” also shows a strong correlation with “interval distance”, and this tends to
increase the number of signals as the distance increases. “Bus stop interval” some-
times showed strong correlation with other independent variables; however, “Bus
stops interval” was a dummy variable and occurred because the values indicated by
the factors were biased. However, “Early Noon” and “Late Noon” are dummy vari-
ables set under the same condition, and they must be independent variables. Since
this time zones were arbitrarily categorized, we thought that the correlation could be
weakened by rearranging it according to the bus location data of each area. There-
fore, we classified the time zones into 6 classes based on the median, maximum
and minimum of the time zone lag using k-means clustering. K-means is a typical
non-hierarchical classification method that divides a set of data into l clusters. First,
an arbitrary centroid µi(i = 1, , l) is defined in the cluster as an initial value. Then,
each point of the data is assigned to the cluster ci having the closest centroid, and
the centroid is updated to the average point of the data included in the cluster. The
cluster assignment and the update of the centroid are repeated until the dispersion
within the cluster is minimized to calculate the optimum classification result. Figure
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Fig. 1.5 Independent Variables whereby |R|> 0.4.

Fig. 1.6 Clustering Result for
Time Zone.

1.6 shows the result of the classification of time zones in a route. Using this clas-
sification result, the correlations between time zones all achieve |R| > 0.4. Then,
we removed “Number of signals” from the independent variables and improved the
multiple-regression model for “time zone” tailored to each route.
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Fig. 1.7 R-squared for Meitetsu Bus.

1.5.4 R-squared by Multiple-Regression Analysis

The results of a multiple-regression analysis are shown in Figure 1.7. The data are
from the Meitetsu Bus Company Limited, having a range of March 1-31, 2017.
For comparative purposes, the R-squared for the Nagoya City Bus data is collected
in Table 1.7. The range of the utilized data is for December 13-19, 2014. The R-
squared value indicates how well an independent variable accounts for the variabil-
ity of another, dependent variable. The value of R-squared ranges from zero to one,
with values closer to one indicating a lower degree of relative error. The highest
R-squared value was 0.90. However, since the coefficients had abnormally large
values, such as 5.86× 1011, multiple-regression analysis could not be performed
properly. This is because the route contains 25 bus stops, and as such, there are
too many independent variables. On the other hand, the smallest R-squared value
is 0.46. This seems to be caused by irregular congestion in a bus stop interval. The
average value for Meitetsu Bus was 0.69, which was close to the average value of
the Nagoya City Bus (0.76). However, the value of Meitetsu Bus was slightly lower
than that of the Nagoya City Bus because there was less data on Meitetsu Bus than
on Nagoya City Bus. Data of Nagoya City Bus were recorded when arriving and de-
parting the bus stop and when communicating every 30 seconds, but data of Meitetsu
Bus were only recorded when departing the bus stop. The relationship between the
R-squared and the number of bus stops is shown in Figure 1.8. The R-squared is
0.0053, and there was no correlation between the multiple-regression analysis and
the number of bus stops in Figure 1.8.
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Table 1.2 R-squared for Nagoya City Bus.

RouteID R-squared
8415 0.79
8471 0.76
8784 0.69
8921 0.58
8939 0.80
8990 0.80
9014 0.80
9015 0.88

Average 0.76

Table 1.3 Variation of R-squared for Route
9.

The type of data R-squared
14 days 0.34

101 days 0.44
excluding 0.55

Fig. 1.8 The Relationship
between the R-squared and
the Number of Bus Stops.

1.5.5 Accuracy Verification by Changing the Amount of Data

We verified how a change in the amount of data affects the estimation accuracy
using the multiple-regression model using the data from Meitetsu Bus Company
Limited. The compared data were data for 14 days (July 1-14, 2016), 101 days (July
1-14, 2016 and from January to March 2017), and 101 days excluding the abnormal
values. The estimated date is July 15, 2016. We removed the abnormal values using
the interquartile range. We calculated the R-squared by comparing the estimated
and actual values for route 9 (Figure 1.7) in Table 1.3. Table 1.3 shows that the
R-squared increased as the amount of data increased. Additionally, excluding the
abnormal values further improved the estimation accuracy.

1.5.6 Visualization

We used the data from the Transportation Bureau City of Nagoya on December 16
and 21, 2014. The result of our visualization is presented in Figure 1.10. The black
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Fig. 1.9 Bus Tapestry Sample.

dots are the running positions of the bus, the red dots are the bus stop positions, and
the dotted lines are the signal positions. The white areas in the heat map are the time
zones during which the bus was not running. For example, ?? is an enlarged view
of the initial time in Figure 1.5.6, where the bus travels along the y axis as time
elapses. The points representing the positions of the bus are divided into sparse and
dense points, where the bus does not move much when the points are dense but does
move when the points are not dense.

Figure 1.5.6 and Figure 1.5.6 are other days of the same route and show a similar
delay condition overall. However, in the range of bus stop 5 to bus stop 6, we find
that the delay on Sunday is greater than those on Tuesdays from 16:00 to 17:00.
Figure 1.5.6 and Figure 1.5.6 are the other route on the same day. They show that
route 8471 has a large delay near three stations before the end point compared to
route 8415. Moreover, in Figure 1.5.6, the signal between bus stop 2 and bus stop 3
does not significantly affect the delay because there are few points before it. On the
other hand, the signal between stop 11 and stop 12 is likely to affect the delay be-
cause there are many points before it. Thus, we can visually identify the relationship
between delay and factors using our visualization method.



1.5 Analysis of Results 13

[Visualization for Route 8415 (Tue).]

[Visualization for Route 8415 (Sun).]

[Visualization for Route 8471 (Tue).]

Fig. 1.10 Result obtained by Bus Tapestry.
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Fig. 1.11 Estimation Error in Route 9, Schedule: 10430.

1.6 Evaluation of the Model

We used the data from Meitetsu Bus Company Limited for March 1-31, 2017 for
Route 9. The estimated date is Tuesday, January 31, 2017. The model was created
for 30 days, excluding the estimated date. For the estimated date, the number of
passengers and delay in front of n stations were the average of 30 days.

1.6.1 Comparison by Estimation Errors

For Schedule 10430, the estimation errors by the multiple-regression model and our
model are presented in Figure 1.11. Schedule 10430 is a bus running from 20 to
21 hours. The estimation errors are the difference between the estimated value and
the actual value. The error is positive when the EMRF model estimates are longer
than the actual value and negative when the model estimates are shorter than the
actual value. Figure 1.11 shows that the estimation errors are smaller than those of
the multiple-regression model, and the EMRF model corrects the estimation.

1.6.2 Comparison by RMSE

We evaluate the models using the RMSE (Root Mean Squared Error) in Equation
1.6 as follows:
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RMSE =

√
1
N

N

∑
i=1

(yi − ŷi)2 [s] (1.6)

where N is the number of bus stop intervals, yi is the actual value of the i-th bus
stop interval, and ŷi is the estimated value of the i-th bus stop interval. The RMSE
is an evaluation method that quantifies the difference between the estimated value
and the actual value. An RMSE closer to 0 indicates a more accurate estimation.
1.12 presents the the RMSE obtained by the multiple-regression model and our
model. Schedule 10430 is a bus running from 10 to 11 hours. The estimated date
varied from March 1 to 31. The horizontal axis is the estimated bus stop, and the
vertical axis is the RMSE. Figures 1.6.2 and 1.6.2, presenting March 31 using data
of other dates, show that the RMSE by our model is smaller than that obtained solely
by using the multiple regression model. Especially in Figure 1.6.2, the estimation
was well corrected at bus stop 2. In Figure 1.6.2, showing March 13, the results
are approximately equal to those under the multiple-regression model. Then, we
estimated the other route in Figure 1.6.2. Most of the RMSE values under our model
showed a higher accuracy than the multiple-regression model except for bus stops 5
and 10. Similarly, for all schedules, the average RMSE is presented in Figure 1.13.
This figure shows that the RMSE was smaller in our model even in the case of using
the average value for the data of one month. Therefore, it is assumed that our model
can improve the estimation accuracy.



16 1 Dynamic Arrival Time Estimation Model and Visualization Method for Bus Traffic

[Route 9, Schedule: 10400 (3/31).]

[Route 9, Schedule: 10425 (3/31).]

[Route 9, Schedule: 10400 (3/13).]

[Route 10, Schedule: 11209 (3/31).]

Fig. 1.12 The RMSE for Route 9 and Route 10.
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Fig. 1.13 The Average RMSE.

1.7 Examination of Presentation Method

We propose a method for presenting the arrival time including estimation errors.
Using the standard deviation, the estimated required time is calculated with some
leeway and presented to users with an accuracy of approximately 95% using Equa-
tion 1.7 as follows:

E ′ = E ±2SD(E −R) (1.7)

where E ′ is the required time including estimation errors, E is the estimated re-
quired time, and R is actual required time. Showing users the earliest arrival time
allows them to broaden their choice of actions, as in Figure 1.14. For example, users
might think “If this time is the earliest possible, let’s go to a convenience store” or
“Since there is no need to hurry, let’s walk slowly”. Presenting the latest arrival time
has the effect of alleviating the anxiety of “How long will I have to wait at the bus
stop?” Our method can also show the estimated arrival time at the destination stop
and inform the users of it because our model can be applied to all bus stop inter-
vals. Presenting the specific estimated arrival times in this way gives users a more
accurate idea of operational situations, making it easier to act upon such data.

Moreover, to investigate the viewpoints of the users on the presentation method
of the estimated arrival time, we performed an investigation using questionnaires.
This period was for January 29-30, 2018. We obtained responses from 184 peo-
ple using SNS, where valid responses from 169 people were obtained. Respon-
dents were asked to evaluate how they viewed estimation errors with 5 responses:
“Never”, “Hardly ever”, “Neutral”, “Some of the time”, or “All of the time”. When
the estimation errors are less than 1 minute, “All of the time” accounted for approx-
imately 90 % of all responses. When the estimation errors are within 1-5 minutes,
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Fig. 1.14 How to Present the Results to Users.

Fig. 1.15 The Result of the Questionnaire about the Presentation Method.

“All of the time”, “Some of the time” and “Neutral” accounted for approximately 90
% of all responses. Therefore, it is assumed that the standard for estimation errors
is less than 5 minutes. Figure 1.15 shows the results of the questionnaire on the pre-
sentation method. There were 4 types of sample types: “Estimated delay time”, “Es-
timated arrival time”, “Estimated time remaining”, and “Graphical presentation”.
“Estimated arrival time” and “Estimated time remaining” each accounted for ap-
proximately 40 % of all responses. Thus, we found that the users prefer to display
the arrival time over the delay time. It is assumed that the users could comfortably
use an application in which they could select the presentation method because the
answers were divided.
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1.8 Conclusion

In this study, we proposed the EMRF model and Bus Tapestry. The EMRF model
is a dynamic model for arrival time estimation combining the multiple-regression
model and the Kalman filter. We verified the accuracy of the estimation using the
R-squared and evaluated the EMRF model by the RMSE. The results showed that
the average estimation error improved from 186 seconds to 17 seconds. We also
presented the estimated arrival time including estimation errors. We performed an
investigation using the questionnaires and obtained 184 answers concerning the pre-
sentation method. The results showed that the standard estimation error was less
than 5 minutes, and the users preferred to display the arrival time rather than the
delay time.

Bus Tapestry is a visualization method for analysis of operational situations. We
can visually compare the operational situations of other days or routes and poten-
tially find different features. Additionally, we can see the relationship between de-
lays and number of signals in greater detail. In the future, it may be possible to
estimate abnormal values and use machine learning. Furthermore, to start an esti-
mation service, it is necessary to conduct a demonstration experiment and collect
the opinions of users.
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