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Abstract

This paper describes the speech cor-
pora designed for research on devel-
opment of real world speech applica-
tions. The corpora built at Center for
Integrated Acoustic Information Re-
search (CIAIR), Nagoya university,
include a multimedia database for the
in-car speech, a corpus for lavalier mi-
crophone speech in real world envi-
ronments, and a corpus for whispered
speech. This paper also presents
studies on recognition of speech in
each corpus using HMM based acous-
tic models.

1 INTRODUCTION

Evolution of computer networking and inter-
net technologies to provide multiple, ubiqui-
tous and flexible connections has enabled ac-
cess to infinite information resources around
the world. Advanced technologies for indexing
and searching the distributed information can
be used to obtain a quick response for com-
plex queries. However, the existing technology
for interfaces to the information access systems
is still a barrier thus preventing their use by
the ordinary people independent of the back-
ground of users. Development of interfaces
based on speech recognition in real world en-
vironments has an important role in providing
the ubiquitous access to information.

Advances in technology for large vocabulary
continuous speech recognition have led to de-
velopment of systems that can be used in of-
fice like environments. However, these sys-
tems have limitations in developing speech in-
terfaces that can be used in real life situations
such as driving in a car or walking on a street.
Construction of large corpora of speech in real
world environments is important for develop-
ment of systems capable of recognition of noisy

speech in these environments. Large corpora
of speech and acoustic data are being built
at Center for Integrated Acoustic Information
Research (CIAIR). In this paper, we describe
these corpora and present the studies on recog-
nition of speech in real world environments.

2 IN-CAR SPEECH CORPUS

Research on development of speech interfaces
that can be used while driving a car is impor-
tant for the following reasons: (1) It is diffi-
cult to use a keyboard or a touch panel, (2)
Communication in a moving environment is
essential for ubiquitous access to information,
and (3) The in-car speech is contaminated with
multiple sources of noise. It is expected that
the technology developed for recognition of the
in-car speech can be used for other real world
environments as well. Therefore, our focus is
on collection of the in-car speech data for spo-
ken dialogues while driving a car.

Table 1: Specifications of recording devices.
Type of Data Specifications

Sound Input 16ch,16bit,16kHz
Sound Output 16ch,16bit,16kHz
Video Input 3ch, MPEG1

Control Signal Status of Accelerator and Brake,
Angle of Steering wheel

Engine RPM, Speed : 16bit,1kHz
Location D-GPS

2.1 Data collection vehicle

The DCV is a car specially designed for the
collection of multimedia data. The vehicle is
equipped with eight network-connected per-
sonal computers (PCs). Three PCs have a 16-
channel analog-to-digital and digital-to-analog
conversion port that can be used for record-
ing and playing back data. The data can be
digitized using 16-bit resolution and sampling
frequencies up to 48 kHz. One of these three



Figure 1: Visual signal captured by the three
cameras. (a) the driver’s face.(left upper), (b)
the driver, the operator and the back view
(right upper) and (c) front view (right bot-
tom).

Figure 2: Configuration of DCV

PCs can be used for recording audio signals
from 16 microphones. The second PC can be
used for audio playback on 16 loudspeakers.
The third PC is used for recording five sig-
nals associated with the vehicle: the angle of
the steering wheel, the status of the accelerator
and brake pedals, the speed of the car and the
engine speed. These vehicle-related data are
recorded at a sampling frequency of 1 kHz in
2-byte resolution. In addition, location infor-
mation obtained from the Global Positioning
System (GPS) is also recorded at the sampling
frequency of 1 Hz.

Three other PCs are used for recording video
images (Figure 1). The first camera captures
the face of the driver . The second camera
captures the conversation between the driver
and the experiment navigator. The third cam-
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Figure 3: Vehicle-related signals. Brake and
accelerator pedals, rotational speed of the en-
gine motor and speed (from top to bottom).

era captures the view through the windshield.
These images are coded into MPEG1 format.
The remaining two PCs are used for control-
ling the experiment. The multimedia data on
all systems are recorded synchronously. The
total amount of data is about 2 GB for about
a 60-minute drive during which three dialogue
sessions are recorded. The recorded data is di-
rectly stored on the hard disks of the PCs in
the car.

Figure 2 shows the arrangement of equip-
ment in the DCV, including the PCs, a power
generator with batteries, video controller, mi-
crophone amplifiers and speaker amplifiers.
An alternator and a battery are installed for
stabilizing the power supply. Wire nets are
attached to the ceiling of the car so that the
microphones can be arranged in arbitrary po-
sitions.

Table 2: Speech materials recorded in the ex-
periment.

item approx. time

prompted dialogue 5 min
natural dialogue 5 min
dialogue with system 5min
dialogue with WOZ 5 min
P.B. sentence (driving) 10 min
P.B. sentence (idling) 5 min

2.2 Speech materials
The collected speech materials are listed in Ta-
ble 2. The task domain of the dialogues is the
restaurant guidance around the Nagoya Uni-
versity campus. In dialogues with a human



operator and the wizard-of-OZ (WOZ) system,
we have prompted the driver to issue natu-
ral and varied utterances related to the task
domain, by displaying a ’prompt panel’. On
the panel, a keyword, such as fast food, bank,
Japanese food, or parking, or a situation sen-
tence, such as ‘Today is an anniversary. Let’s
have a party.’, ‘I am so hungry. I need to eat!’
or ‘I am thirsty. I want a drink!’, are displayed.
In these modes, therefore, the driver takes the
initiative in the dialogue. The operator also
navigates the driver to a predetermined des-
tination while they are having a dialogue, in
order to simulate the common function of a
car-navigation system. All responses of the
operator are given by synthetic speech in the
WOZ mode. In addition, fully natural dia-
logues are also conducted between the driver
and a distant operator via cellular phone. In
such natural dialogues, the driver asks for the
telephone number of a shop from the yellow
pages information service. These natural dia-
logues are collected both when idling the en-
gine and while driving the car.

All utterances have been phonetically tran-
scribed and tagged with time codes. Tagging
is performed separately for utterances by the
driver and by the operator so that timing anal-
ysis of the utterances can be carried out. On
average, there are 380 utterances and 2768
morphemes in the data for a driver.

In addition to the dialogues, speech of
the text read aloud and isolated word utter-
ances have also been collected. Each subject
read 100 phonetically balanced sentences while
idling the engine and 25 sentences while driv-
ing the car. A speech prompter is used to
present the text while driving. The speech
data of the read text is mainly used for train-
ing acoustic models. The set of isolated word
utterances consists of digit strings and car con-
trol words.

2.3 Data collection using an ASR
system

Since dialogue between man and machine is
one of our final goals, we are collecting man-
machine dialogues using a prototype spoken di-
alogue system that has speech recognition ca-
pabilities. The task domain of the prototype
system is restaurant information. Drivers can
retrieve information and make a reservation
at a restaurant near the campus by convers-

ing with the system. The automatic speech
recognition module of the system is based on
a common dictation software platform known
as Julius 3.1 (Kawahara et al., 1999).

A trigram language model with a 1500-word
vocabulary is trained using about 10000 sen-
tences. The main body of the training sen-
tences is extracted from the human-human di-
alogue collected in the early stage of the exper-
iment. The other sentences are generated from
a finite state grammar that accepts permissi-
ble utterances in the task domain. State clus-
tered triphone hidden Markov models consist-
ing of 3000 states are used as acoustic models.
The number of mixtures for each state is 16.
The models are trained using 40,000 phoneti-
cally balanced sentences uttered by 200 speak-
ers recorded in a soundproof room with a close-
talking microphone (Itou et al., 1999). The
same microphone as in this recording is used
for speech input in the prototype dialogue sys-
tem. A preliminary evaluation of the speech
recognition module of the system has given a
word accuracy of about 70% under real driving
conditions.

The dialogue is controlled by transitions
among 12 states, each of which corresponds
to the database query results. When a set of
particular conditions defined for a transition
is satisfied, the predefined state transition oc-
curs, invoking associated actions, i.e., gener-
ating speech responses. Up to today, 75% of
the man-machine dialogues have been correctly
completed by the system.

2.4 In-car speech recognition through
multiple regression

Based on the constructed corpus, a new multi-
channel method for noisy speech recognition
is proposed based on the multiple regression
of the log spectra (MRLS). The basic idea of
the proposed method is to approximate the
log power spectrum of the close-talking micro-
phone speech by a linear combination of the
log power spectra of the distant microphones.
The approximation is given by the following
procedure.

Suppose that X0(k) is the spectrum of the
speech obtained by the close-talking micro-
phone at the kth spectral channel, and Xi(k),
i=1,. . . , N, are the spectra of the speech ob-
tained by the distant microphones located at
N different positions. The spectral regression



is given by

log |X0 (k)| =
N∑

i=1

w̄i (k) log |Xi (k)|, (1)

where w̄i(k) are the real numbers that give the
minimum regression error, i.e.,

w̄i (k) = arg min
wi(k)

E
[
d2

]
, (2)

where

d2 =
K∑

k=1

{
log |X0 (k)| −

N∑

i=1

wi (k) log |Xi (k)|
}2

.

(3)
Here, the expectation, E[], is calculated over
the training utterances.

Note that the regression error minE
[
d2

]
is

equal to the cepstral distance between the ap-
proximated and the target spectrum because
of the orthogonality of the discrete time co-
sine transform (DCT) matrix. Therefore, the
method can be considered as an extension of
feature average in the cepstrum domain by re-
placing the average value with the weighted
sum. Furthermore, applying the regression
analysis in the log spectrum domain has the
following two merits: (1) the spectrum floor-
ing due to the oversubtraction can be avoided,
and (2) the target spectrum for a wider range
of intensity can be approximated.

Figure 4: Microphone arrangement for data
collection.
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Figure 5: Recognition results under various
driving conditions: normal, CD on and win-
dow open (from top to bottom.)

In order to evaluate the effectiveness of the
MRLS method, recognition experiments have
been performed. Throughout this section, the
same structure is used for the set of triphone
HMMs, i.e., 1) they share 1000 states; 2) each
state has 16 component mixture Gaussian dis-
tributions; and 3) the feature vector is a 25 (12
MFCC + 12 ∆ MFCC + ∆ logpower) dimen-
sional vector.

For comparison, the following three differ-
ent sets of HMM are trained: 1) close-talking
model is trained using the close-talking micro-
phone speech, 2) distant microphone model is
trained using the speech at the nearest micro-
phone (mic. 6 in Figure 4), and 3) MRLS model
is trained using the spectra obtained from
the MRLS method. For training the MRLS
model, the regression weights are optimally de-
termined for each training sentence. The total



number of training sentences is about 8,000;
2,000 of them are uttered while driving and
6,000 of them are uttered in the idling car.

The test data includes a isolated word utter-
ances of a 50 word set. Each of 18 speakers ut-
tered the word set under 18 different car condi-
tions. For each utterance, six different versions
of the speech data are recognized. They are 1)
speech recorded using the close-talking micro-
phone, 2) speech recorded at the nearest micro-
phone, 3) MRLS output with the optimally de-
termined weights for each utterance, 4) MRLS
output with the optimally determined weights
for each speaker, 5) MRLS output with the
optimally determined weights for each driving
condition, and 6) MRLS output with the op-
timally decided weights for all of the training
data.

Note that case 3) is an unrealistic case in
that the close-talking speech itself can be used
for recognition. The results for this case in-
dicate the upper bound of the MRLS. On the
other hand, cases 4) and 5) assume that the op-
timal weights for MRLS are constant for each
speaker or driving condition.

2.5 Results of MRLS

For the evaluation, six recognition experi-
ments are performed: 1) recognize close-
talking speech by the close-talking model
(close-talking), 2) recognize nearest micro-
phone speech by the distant microphone model
(distant), 3) recognize optimal MRLS output
by the MRLS model (MRLS opt.), 4) recog-
nize MRLS output optimized for each speaker
by the MRLS model (MRLS spker), 5) rec-
ognize MRLS output optimized for each driv-
ing condition using the MRLS model (MRLS
cond.), and 6) recognize MRLS output opti-
mized for all training data using the MRLS
model (MRLS all). In addition, the results of
spectrum subtraction (SS) are also compared
where the training and the test speech at the
nearest distant microphone are enhanced by
the spectrum subtraction.

The results are shown in Figure 5 for each
car condition. It is found that MRLS out-
performs the nearest distant microphone re-
sult even in the MRLS:all case. This result
suggests the robustness of the method to the
change of the location of the noise sources, be-
cause the primary noise locations are different
between ‘open window’ and ‘cd’ cases. It is

also found that the improvement is larger when
the performance of the distant microphone is
lower. Furthermore, by optimizing the regres-
sion weights for each speaker or driving condi-
tion, recognition accuracy can be further im-
proved, but the performance is still not as high
as the result of the upper bound.

3 LAVALIER MICROPHONE
SPEECH CORPUS

For the realworld speech applications, hands-
free is an important issue for making use of
the merit of speech interface, i.e., remote in-
put. The speech captured at the distant mi-
crophone, however, is distorted by the addition
of the background or interfering noise and/or
convolution of the acoustic channel; and is
more difficult to recognize.

Using lavailer microphone is a compromis-
ing between the distant microphone and the
close-talking microphone because lavalier mi-
crophones can be attached to any part of the
body. They are also lightweight and the SNR
difference between them and close-talking mi-
crophones is not significant if they are placed
near the mouth area. Therefore, a large corpus
of lavailer microphone speech is collected and
the recognition experiments using the lavailer
microphone speech are performed.

3.1 Recording Environments

Speech was recorded by using Sony ECM77B
lavalier microphones. This is an ultra mini om-
nidirectional electret condenser lavalier suit-
able for many different applications, rang-
ing from recording of news and interviews to
recording in theaters and for instrument pick-
up. Its frequency response is 40-20 kHz with
upper range lift for extra presence. Directiv-
ity is optimized to ensure uniform output, re-
gardless of direction of the sound source. The
metal mesh windshield effectively eliminates
both outdoors wind noise and “popping” in
close microphone situations. It is 5.6mm in
diameter and 12.55mm in length.

Each subject was equipped with two lavalier
microphones. One was attached to the frame
of the provided spectacles and the other was
attached to the subject’s shirt around the chest
area. The recording scene is as shown in Fig-
ure 6. Input speech was quantized to 16 bits,
and sampled at 48 kHz.



microphone

Figure 6: Recording scene - A lavalier micro-
phone is placed on the subjects shirt around
the chest area and the other is on the specta-
cles frame.

This database was constructed to carry out
recognition experiments for real world appli-
cations. Speech was recorded in four differ-
ent environments which included recording in
a sound-proof room, in an office space, on a
street, and inside a car. The noise level of
the sound-proof room was about 22 dB(A),
and the reverberation time was approximately
150 ms. Three types of cars were used: a
Sedan, a station wagon, and a one-box type
car. A driver was instructed to drive these cars
in the Nagoya city suburbs. The subjects sat
in the passenger seat and were instructed to
read a list of phonetically balanced sentences.
The traffic on the street was relatively heavy.

3.2 Sentence Composition

For constructing this speech corpus, we used
10 sets of ATR phonetically balanced Japanese
sentences (Sagisaka et al., 1990)), consisting
of a total of 503 sentences. The Acousti-
cal Society of Japan (ASJ) continuous speech
corpus (Japanese Newspaper Article Sen-
tences:JNAS) (Itou et al., 1999), consisting of
100 sentences in total was also used.

Each subject read one set from the ATR
phonetically balanced sentences and 5 sen-
tences from 100 JNAS sentences. Phonetically
balanced sentences were used for to build the
training data, and the JNAS sentences were
used for the test data. Based on this record-
ing method, each speaker read 60 sentences in
each environment. In total, 53 speakers (26
males and 27 females) participated in building
this database.

Table 3: Recognition Model Parameters
Sampling rate 48 kHz

Window Hamming window
Frame length 25 ms
Frame shift 10 ms

Feature Vector 12 MFCC + 12 ∆ MFCC
+ ∆-log-POWER

HMM 32-mixture triphone
Number of states 500

Training data 2150 sentences

3.3 Recognition Experiments

HMM based continuous speech recognition ex-
periments were performed using the lavalier
microphone speech corpus with a vocabulary
size of 20,000. Four HMMs were trained for
each environment. For training each model
2150 sentences were used from 43 speakers (21
males and 22 females). The other remaining
conditions are summarized in Table 3. The
test data were 50 JNAS sentences spoken by
10 speakers (5 males and females each) dif-
ferent from those who recorded the training
data. The decoder used was julius 3.1 (Kawa-
hara et al., 1999). Recognition performance
is evaluated by the word correct rate. For
comparison, we considered the IPA1 standard
Japanese HMM. This model has 2,000 states,
with 16 mixtures, and is of gender independent
triphone type.

3.4 Recognition Results

The results obtained from the HMM continu-
ous speech recognition tests are shown in Fig-
ures 7 and 8. In these figures, ‘IPA’ refers
to the IPA standard Japanese HMM. ‘Train’
refers to the HMM trained using 2,150 sen-
tences in the same environment as sentences
in the test set. ‘Train ALL’ refers to the
HMM trained by 8,600 sentences in all en-
vironment conditions. Compared with the
results of IPA standard HMM, it is evident
that the recognition rates using environment-
dependent HMMs are better than those us-
ing IPA HMMs in all environments except for
the sound-proof room. Especially, at such
noisy environments as the street and inside
the car, the recognition rates are over 10%
better than those using IPA and only 2,150
sentences were used. The recognition rate of
speech utterances recorded in the sound-proof

1Information-technology Promotion Agency, Japan



room is about 6% higher if the IPA standard
HMM is used rather than the HMM trained by
lavalier microphone speech utterances. This
is because 1) In the sound-proof room, there
is little difference between lavalier microphone
speech and close-talking microphone speech;
and 2) IPA standard HMM is trained with
about 20 times more training data than the
HMMs trained here.

Figure 7: Recognition results for speech in dif-
ferent environment recorded by a lavalier mi-
crophone attached to the spectacles.

Figure 8: Recognition results for speech in
different environments recorded by a lavalier
microphone attached to the shirt around the
chest area.

4 WHISPERED SPEECH
CORPUS

Whispered speech is produced by speaking
without vibration of the vocal cords. Since ex-
halation is the source of sound in whispered

speech, its acoustic characteristics differ from
those of normal speech. In particular, the mag-
nitude (power) in the low-frequency region of
whispered speech is weaker than that in nor-
mal speech. Therefore, the signal-to-noise ra-
tio (SNR) of whispered speech in a real envi-
ronment where the background noise is present
is low. Accordingly, whispered speech recogni-
tion is considered to be more difficult.

We have built a speech corpus consisting of
whispered speech and normal speech of more
than 6,000 sentences from 123 speakers. One
hundred and twenty three speakers (68 males
and 55 females) participated in speech record-
ing. They produced both normal speech and
whispered speech. Each speaker read one set
(50 sentences) from sets A to I in ATR pho-
netically balanced Japanese sentences. For the
test data, 50 sentences from newspaper articles
were used.

4.1 Recording Method

Whispered and normal speech utterances were
recorded in the same sound-proof room as the
lavalier microphone corpus, using a DV cam-
era and a close-talking microphone (Sennheiser
HMD410). The sampling rate used was 48 kHz
with 16 bit quantization.

Figure 9: Whispered speech recording through
cellular-phone with covering the mouth (left)
and with covering both the mouth and the re-
ceiver (right).

4.2 Whispered Speech Recognition

In this section, we conduct recognition ex-
periments using the close-talking microphone
whispered speech corpus described above. The
recognition model is again the hidden Markov
Model (HMM).

HMMs trained by normal speech and HMM
trained by whispered speech were built. For



training the whispered speech model, 4,000
sentences were used from 80 speakers (40 males
and 40 females). Other remaining conditions
are summarized in Table4.

Table 4: Recognition Model Parameters
Sampling rate 16 kHz

Window Hamming window
Frame length 25 ms
Frame shift 10 ms

Feature Vector 12 MFCC + 12 ∆ MFCC
+ ∆ POWER

HMM 16-mixture monophone
Number of states 129

For comparison with the whispered HMM,
a normal speech HMM was also trained us-
ing 14,000 phonetically balanced Japanese sen-
tences of 276 speakers (138 males and 138 fe-
males) from JNAS speech database (Itou et
al., 1999). This HMM has 129 states, with 16
mixtures, and is of gender independent mono-
phone type.

Using the whispered and normal speech
HMMs, continuous speech recognition exper-
iments were performed with a vocabulary size
of 20,000. The test data comprised of 200 whis-
pered and normal speech JNAS sentences spo-
ken by 4 speakers (2 males and females each).
The decoder used was julius-3.1.

4.3 Results
The recognition rates of normal speech and
whispered speech using the normal speech
model and whispered speech model is shown in
Table 5. The benchmark result for this exper-
iment was the 87% recognition rate obtained
for normal speech using the normal speech
model. However, a 74% recognition rate was
obtained for whispered speech using the whis-
pered speech model.

We also used the normal speech model for
recognizing the whispered speech. This gave
a 27% recognition rate which was significantly
lower than those in the cases where the same
speech style was used in the acoustic model
and the evaluation sentences. Also this reduc-
tion in recognition rate was found to be larger
than the case where the whispered speech
model was used for recognizing normal speech.

5 SUMMARY

In this paper, we presented the speech cor-
pora collected at center for integrated acous-

Table 5: Recognition rates of normal speech
and whispered speech

Test Speech
Models Normal Whisper

Normal Speech Model 87% 27%
Whisper Speech Model 62% 74%

tic information research (CIAIR) and the re-
sults of the recognition experiments using the
corpora. These corpora are available for var-
ious research purposes through our WEB site
http://db.ciair.coe.nagoya-u.ac.jp/.
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