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Abstract—As global demand for logistics continues to grow, op-
timizing the automation and efficiency of distribution warehouse
operations is of paramount importance. Digitalizing warehouse
environments, which refers to the process of sensing the physical
space and extracting meaningful information from the obtained
data, offers a promising solution to this challenge. However,
converting raw warehouse data, such as video footage captured
inside the warehouse, into actionable metadata (e.g., tracking
the movement paths of workers and products or analyzing
the usage patterns of different warehouse locations) often ne-
cessitates significant human intervention. The rise of machine
learning further complicates this, as it requires the manual
preparation of extensive training datasets. In this paper, we
introduce a framework that semi-automates the digitalization
process in complex warehouse settings. This framework employs
dense optical flow and representation learning to autonomously
segment warehouse objects and cluster similar objects, thereby
substantially cutting down on annotation costs. To evaluate our
approach, we constructed a large-scale data collection platform
with over 60 fixed cameras in a real-world logistics warehouse,
and the video data from this platform was then applied to our
framework. Our evaluations indicate that our method markedly
reduces both the time and resources required for warehouse
digitalization using the captured video data.

Index Terms—smart warehouse, data digitalization, digital
twin

I. INTRODUCTION

The global logistics market expansion necessitates auto-
mated and efficient business processes in warehouses. Studies
have focused on various methods to enhance warehouse opera-
tions efficiency [1]–[3], notably digital twins. This technology
replicates real-world objects, processes, and human activities
in cyberspace, facilitating efficient warehouse management
[4]. Digital twins allow for the optimization of worker allo-
cation, product placement, and transportation routes in ware-
houses. Unlike physical trials, which are disruptive and time-
consuming, digital twins enable cost-effective, non-intrusive
simulations in cyberspace.

Building a digital twin that is faithful to the physical
space requires an accurate digitalization of the physical space,
which refers to the process of sensing the physical space and

extracting meaningful data from the acquired data. However,
deriving useful metadata from raw data, such as warehouse
videos for tracking movement or analyzing space usage, re-
quires extensive human effort. For example, object recognition
in warehouses via machine learning demands extensive data
preparation and annotation. In particular, logistics warehouses
are highly complex environments. Since they contain millions
of diverse objects, they require more annotation costs than
typical environments. This is a significant challenge in the
digital twinning of logistics warehouses.

In this paper, we propose a semi-automated framework for
digitalizing the physical space of logistics warehouses with
a wide variety of objects. This framework achieves efficient
annotation of warehouse objects with minimal human re-
sources by automatically segmenting warehouse objects based
on motion detection methods and estimating objects of the
same class through representation learning and clustering.
In this study, we constructed a large-scale data collection
infrastructure composed of more than 60 fixed cameras in
an actual logistics warehouse in Aichi Prefecture, Japan, and
digitalized the logistics warehouse using warehouse footage.
We also applied this framework to the recognition of workers
and handpallets performing tasks in a logistics warehouse
and showed that this method can reduce the cost of object
annotation by 98.6%.

The contributions of this paper are as follows:

• In an actual logistics warehouse, we constructed the
largest-scale data collection infrastructure to date, com-
posed of more than 60 fixed cameras, and digitalized the
logistics warehouse using warehouse footage.

• Based on our digitalization case study, we present the
challenges in digitalizing logistics warehouses and build-
ing a digital twin.

• We proposed a method to significantly reduce the an-
notation costs of warehouse objects, which is a major
challenge in the digital twinning of logistics warehouses.

This paper first presents research relevant to the topic



(Section II). Next, an overview of the large-scale camera arrays
we have built (III), a pre-study of warehouse digitalization
using it (IV), and the challenges in warehouse digitalization
identified from this study (V) are presented. The architecture
of the proposed framework to solve these challenges is then
presented (VI), followed by experiments (VII), evaluations
(VIII) and discussions (IX) to demonstrate its effectiveness.

II. RELATED WORK

In recent years, research aimed at improving the efficiency
of operations within logistics warehouses includes the use
of digital twins for the introduction of Autonomous Mobile
Robots (AMR) to enhance warehouse utilization [5], task
scheduling and optimization of goods storage warehouses us-
ing digital twins [6], [7]. Zhou et al. [8] proposed a framework
called SOD-DT for constructing digital twins by extracting
small objects present in the warehouse. For this method,
annotations were made on 5000 images to train the recognition
model. The amount of time they spent on this task is not clear
in their paper, but annotating images generally takes a lot of
time and requires a significant amount of human resources.

Most deep learning based recognition methods have the
weakness of requiring a large amount of training data to train
the recognition model. However, generic models capable of
zero-shot object recognition [9]–[11] have emerged in the last
1-2 years. These methods are very promising as they do not
have to spend any annotation costs for recognizing specific
objects, but building a generic model requires huge com-
putational resources, making the construction cost extremely
high. For example, one of the latest methods for achieving
zero-shot panoptic segmentation called ODISE [10] generates
training images by augmenting 10242 original images and
then trains the model for 90k iterations using 32 NVIDIA
V100 GPUs, requiring a massive dataset and computational
resources. Additionally, the warehouse environment we are
targeting is a complex scene with a wide variety of objects, and
the recognition accuracy in such an environment is unknown.

Research has also been conducted to partially automate
annotations to reduce the workload, including methods for
estimating the malignancy of lung nodule diagnosis with few
annotations using self-supervised learning [12], and methods
for automatically annotating the state of hands during cook-
ing [13]. However, these methods are dependent on specific
domains or datasets and are difficult to apply directly to our
environment. Furthermore, an approach called active learning,
which prioritizes annotating data that is thought to be highly
effective for learning and reduces the number of annotations
[14]–[16], has also been proposed. These methods achieve
higher accuracy with fewer annotations, but it is stated that
annotations of half or several thousand samples of the entire
dataset are still necessary. In the warehouse environment we
are targeting, with its diverse range of objects, this could
potentially be a significant burden.

Fig. 1. Schematic of the camera installation locations and installed camera

Fig. 2. Application for lining up images captured by cameras

III. BUILDING A LARGE SCALE CAMERA ARRAY FOR
WAREHOUSE DIGITALIZATION

In this section, we describe building a large-scale camera
arrays in a logistics warehouse in Aichi Prefecture, Japan, to
create its digital twin. The cameras equipped in the warehouse
capture about 1.2TB of daily video, totaling over 200TB in 10
months. Privacy concerns are addressed by informing employ-
ees about the cameras and obtaining prior approval for data
collection. Shao et al. [17] highlight accuracy as key in digital
twin development, advising minimalism to prevent errors.
Our camera arrays, covering the entire warehouse, captures
detailed, essential data without redundancy. Our approach,
which focuses solely on camera-based data acquisition, is ideal
for creating accurate digital twins.

Our logistics warehouse is equipped with a camera array of
66 fixed-point cameras, as shown in Fig. 1. These cameras
installed at strategic intervals on the ceiling and provide
comprehensive coverage with some offering a direct downward
view and others a bird’s eye view. This setup includes cameras
positioned inside the warehouse and at truck berth, which
is important place for incoming and outgoing deliveries, for
monitoring loading and unloading activities. The camera we
used is H.View HV-800G2A5. Recording resolution was set
to 1920× 1080, and frame rate was set to 5 fps. All cameras
are network-connected, with data stored on the warehouse’s
network storage.

We apply several post-processing techniques to enhance
the usability of videos collected for collaboratively sensing a
logistics warehouse using multiple cameras. Firstly, accurate
synchronization of timestamps across videos recorded by each
camera is essential. Each camera periodically synchronizes
its time with a Network Time Protocol server. Additionally,
timestamps indicating the recording time of each frame are
printed in the videos and Optical Character Recognition (OCR)
is applied to extract these timestamps. Secondly, the videos
often exhibit lens-induced distortion. To correct this and fa-



Fig. 3. Visualization of moving objects’ paths

Fig. 4. Example of the object tracking in the warehouse

cilitate effective video stitching, we use the camera’s intrinsic
parameters to perform distortion correction. Finally, to provide
a comprehensive view of the warehouse, we stitch these
corrected videos. This is achieved using a specially developed
application shown in Fig. 2, which allows for spatial merging
of the footage from each camera onto a 3D model of the
warehouse, assigning global coordinates within the warehouse
to each video segment.

’̀

IV. PRE-STUDY FOR LOGISTICS WAREHOUSE
DIGITALIZATION

In this study, we explore the digitalization of logistics
warehouses using our large-scale camera arrays to assess its
effectiveness and identify challenges. The study includes two
primary analyses.

Firstly, we analyze object movement within the warehouse.
By stitching together video footage, we digitally captured
object movements and analyzed their paths by computing
differences between consecutive frames as shown in Fig. 3.
This analysis provides insights for optimizing transport routes
and strategic placement. Furthermore, we developed an object
tracking system employing YOLOv8 [18] and OCSORT [19]
for detection and tracking. An example of the tracking result is
shown in Fig. 4. This system can be extended for warehouse-
wide tracking, integrating stitching processes described in
Section III.

Secondly, we conduct truck berth analysis to understand
truck berth utilization. By analyzing footage from truck berth
cameras, we assess floor conditions using instance segmen-
tation, which identifies and classifies objects and generates
segmentation masks as shown in Fig. 5. We classified 14
frequent warehouse classes using Mask R-CNN [20] trained
on 1791 annotated images, resulting in a total of 179,324
patterns across all classes. This analysis helps in estimating
the utilization of truck berth floor space by counting pixels
recognized as floor area. Fig. 6 shows the temporal evolution

Fig. 5. Example of the recognition using instance segmentation

Fig. 6. Temporal evolution of floor vacancy rate in a particular truck berth

of the floor space vacancy rate that reveals the condition and
efficiency of truck berth operations.

V. CHALLENGES OF LOGISTICS WAREHOUSE
DIGITALIZATION

In our study of logistics warehouse digitalization detailed in
Section IV, and through the analysis of videos over 10 months,
we identified key challenges essential for precise digitalization
and digital twin construction.

A significant challenge is dealing with the wide variety
of products in warehouses. These products vary greatly in
size, shape, and material, requiring extensive annotation for
accurate detection. In the truck berth analysis described in
Section IV, around 180,000 annotations were manually gener-
ated, which still did not achieve practical accuracy. Generating
sufficient annotations for all product patterns is crucial but
demands substantial human resources.

Another challenge is the dynamic nature of the warehouse
environment. Factors like seasonal changes in products, and
alterations in warehouse layout to enhance operational effi-
ciency, mean that a digital twin based on data from a spe-
cific time may become outdated as the environment evolves.
Therefore, continuous digitalization of the physical space and
its regular integration into the digital twin is necessary. This
also implies a need for ongoing annotation, especially when
encountering unknown objects.

VI. FRAMEWORK FOR SEMI-AUTOMATED WAREHOUSE
DIGITALIZATION

As described in Section V, the problem of requiring a large
amount of annotation consumes a lot of human resources and
significantly increases the cost of digitalization. In this section,
we propose a semi-automated annotation framework for the
digitalization of the warehouse to overcome the challenges.



Fig. 7. Overview of the proposed framework

Fig. 8. Example of the segmentation using optical flow

Fig. 7 shows the overview of the proposed framework. This
framework aims to reduce the annotation cost of warehouse
objects, enabling the digitalization of the warehouse with less
effort. It consists of four main steps: segmentation, encoding,
clustering, and labeling.

A. Segmentation

In this step, we perform segmentation of warehouse objects,
which is an essential part of the annotation process. We
conduct object segmentation by applying a moving object
detection method. many methods have been proposed for
detecting moving objects in videos and segmenting them,
including methods based on frame subtraction and optical flow
and so on. Fig. 8 shows an example of segmenting moving
objects in a video using optical flow. The method we use in
this study is discussed in Section VII-A1.

B. Encoding

In this step, segmented objects are encoded into embedded
representations. The purpose of this step is to map similar
objects to similar embedded representations and form clusters
of similar objects in the feature space. This concept, known as
metric learning or distance metric learning, is widely used in
tasks like face recognition and image searching. In this paper,
we implement and compare two types of encoders: one based
on deep distance learning and the other based on autoencoder.
Autoencoder is a method for dimensionality reduction by
extracting essential features from the input, and they have
the effect of mapping similar objects to close positions in the
feature space.

C. Clustering

In this step, we apply clustering to the embedded repre-
sentations of the objects and group objects that are estimated
to belong to the same class. The goal of this step is to group
objects that are estimated to be of the same class and to reduce

Fig. 9. Screenshot of the labeling tool

the amount of work required for labeling. Before clustering,
we apply a dimensionality reduction method to the embedded
representations obtained from the encoder to extract more es-
sential features and reduce computational costs. In this paper,
we implement and compare two representative dimensionality
reduction methods: UMAP [21] and PCA. Additionally, we
implement and compare two clustering methods: DBSCAN
[22] and K-Means.

D. Labeling

In this step, we label the clustered objects to complete the
annotation. While all the previous steps are automated, this
step requires manual work. For labeling, we implemented a
labeling tool that works in a web browser. In this tool, objects
are displayed in groups obtained in the clustering step, and
the user instructs which label to assign to them. Some objects
might be misclassified due to errors in class estimation. For
these cases, a checkbox to exclude the object is provided
below each object image and annotators can exclude that
object from the group by checking this box. While this feature
may increase the amount of labeling work, it contributes to
improving labeling accuracy. Fig. 9 shows a screenshot of this
labeling tool.

VII. EXPERIMENT

In this section, we describe experiments conducted to verify
the effectiveness of the proposed framework. For these exper-
iments, we applied the proposed framework to data collected
from our large-scale camera arrays to verify the effect of
reducing annotation costs. For this experiment, we focus on
annotations of workers and handpallets, the most frequently
appearing objects in the warehouse.

A. Implementation of Each Component in the Framework

1) Segmentation: Before the experiments, we considered
several methods for segmentation. This time, we applied the



frame subtraction method, Farneback method [23], and RAFT
[24] to actual footage taken inside a warehouse and checked
the accuracy of the segmentation. The Farneback method is a
conventional approach for calculating optical flow, and RAFT
is an optical flow estimation method based on deep learning.
Using the frame subtraction method, we observed significant
effects of brightness changes over time, resulting in a large
amount of noise data. The Farneback method exhibited some
robustness to brightness changes and produced less noise data,
but the contours of the segmentation masks were not accurate.
RAFT, being a deep learning-based method, incurred high
computational costs but had the best robustness to brightness
changes and segmentation accuracy among these methods.
Since segmentation accuracy directly affects annotation qual-
ity, it is considered important to prioritize accuracy despite the
higher computational cost. For these reasons, in this paper, we
adopted RAFT as the segmentation method. With RAFT-based
segmentation, we used a pre-trained model to estimate optical
flow for each frame, and then generated segmentation masks
for the moving parts identified as pixels where the output
flow magnitude was positive. The pre-trained model used was
officially provided and it was trained using the FlyingThings
[25], which is a large-scale dataset to enable training and
evaluating scene flow methods. Furthermore, the contours of
the generated mask image are extracted, and based on this
contour information, the object mask is separated for each
instance. At this time, masks with pixel counts less than 0.2%
of the entire image are removed as noise. Also, during the
evaluation of segmentation methods, it was found that RAFT
mistakenly detects the black margins in the frame caused by
distortion correction as moving objects, so objects with an
average brightness value of less than 10 were also removed as
noise.

2) Encoding: In this experiment, we prepared two types
of encoders for comparison: SimSiam [26], a deep distance
learning method, and Vision Transformer based Autoen-
coder(ViTAE). ViTAE is an autoencoder that includes the
Transformer encoder of Vision Transformer [27] as part of
its encoder, and the encoder of ViTAE consists of an MLP
head composed of a fully connected layer and a GeLU layer,
connected ahead of the Transformer encoder. Furthermore,
the decoder is composed of fully connected layers, decon-
volution layers, and GeLU layers, expanding the dimension
of the embedded representation to obtain an output of the
same dimension as the input. During training, the goal is to
minimize the reconstruction loss of the input and output. The
implementation and hyperparameters of SimSiam were based
on the official version, with the only modification being a batch
size change to 128. ViTAE was implemented using PyTorch,
with the dimension of the embedding representation set to
2048, the default value in SimSiam. The optimizer used was
Adam, the learning rate was set to the PyTorch default of
0.001, and the batch size was also set to 128. As explained in
Section VII-A1, we used RAFT to extract 72465 objects from
videos to create training data and conducted training for 100
epochs each. However, the pre-trained parameters officially

provided were applied to the Transformer encoder part, and
the weights were fixed during training.

3) Clustering: In this experiment, we implemented UMAP
and PCA as dimentionality reduction methods before clus-
tering, and conducted a comparative study. This time, the
2048-dimensional embedded representations obtained from
the encoder described in Section VII-A2 were compressed
to 512 dimensions. UMAP has typical parameters such as
n neighbors and min dist. n neighbors is a parameter that
determines how much emphasis is placed on the local and
global structures of the data in dimension reduction. min dist
represents the minimum possible distance between data points
and functions similarly to n neighbor. The bigger the values
of both, the more the dimentionality reduction emphasizes
the global structure. In this study, we set n neighbors = 10
and min dist = 0 for the experiments. Additionally, we
implemented DBSCAN and K-Means as clustering methods,
and conducted a comparative study. Typical parameters of
DBSCAN include eps and min samples. eps represents the
maximum distance at which one data point is considered to
be in the neighborhood of another during cluster formation,
and is the most critical parameter in DBSCAN. min sample
is the minimum number of data points required around a
certain data point to form a cluster. This number includes
the data point itself, and those not meeting this criterion are
treated as noise. For this experiment, we set eps = 0.1 when
the encoder was SimSiam, eps = 0.2 when it was ViTAE,
and min sample = 0 for both. Furthermore, the number of
clusters in K-Means was set to 200 when using SimSiam as
the encoder, and 400 for ViTAE. These clustering components
were implemented using scikit-learn.

B. Annotation Using the Proposed Framework

We applied the proposed framework and performed anno-
tation for the workers and handpallets. In this experiment,
videos collected from 21 cameras included in the large-scale
camera arrays were used as input. Each component processed
the input images, generating 4578 annotations for workers
and 1309 annotations for handpallets. The annotations were
performed by a single annotator. Additionally, as explained
in SectionVI-D, we used checkboxes to remove misclassified
objects from the cluster, and instructed the annotator to remove
objects that were clearly misclassified or of obviously poor
quality. However, checking each object meticulously would
require a considerable amount of time, so we also instructed
to ignore objects unless they were clearly erroneous. Addi-
tionally, in order to obtain a metric for annotation cost when
using the proposed framework, the time required for labeling
was measured.

C. Training the Recognition Model Using Generated Annota-
tions

Using the annotations generated in Section VII-B, we
trained a recognition model for the workers and handpallets.
For this experiment, we used Faster R-CNN [28] implemented
in Detectron2 [29] as the recognition model, which is a



deep learning based framework for object detection tasks,
estimating the class and bounding box of instances. In this
experiment, to train the recognition model, we performed
training ranging from 5000 to 40000 iterations. After training
the model, we applied it to dataset for evaluation to evaluate
the model’s accuracy. Details on model evaluation are dis-
cussed in Section VIII.

D. Preparation of Baseline Method

As a baseline method against our proposed framework,
we created a recognition model using the typical fully man-
ual annotation method. For frames of videos collected with
the large-scale camera arrays, workers and handpallets were
manually annotated, and the same number of annotations
as created by the proposed framework was generated. The
manual annotation was conducted by two individuals regularly
involved in such work. The annotators marked the workers
and the handpallets in the images by placing bounding boxes
around them. Under the same conditions as in Section VII-C,
a recognition model for the workers and the handpallets was
created. After training the model, it was applied to unknown
data, and a comparison was made with the model created using
the proposed framework.

VIII. EVALUATION

A. Evaluation Metrics

We employ two primary metrics to assess the proposed
method. Firstly, we utilize Average Precision (AP) to quanti-
tatively evaluate recognition task performance. AP, averaging
accuracy and recall at various thresholds, provides a single
value representing the model’s recognition performance. High
AP values indicate high object recognition accuracy and good
quality of the dataset used for training. Secondly, we assess the
efficiency of model creation by considering the amount of time
annotators spent intervening. The capability to develop a high-
quality model within a short timeframe is crucial for real-world
applications. By evaluating these metrics, we comprehensively
assess the performance and efficiency of the proposed method.

B. Evaluation Results

For evaluation, annotations were manually performed in
the same way as the baseline method, generating 863 worker
and 256 handpallet annotations. The results of evaluating the
baseline and proposed methods are shown in Table I. For
combinations where results are not reported, the clustering
resulted in either all objects being concentrated in a single
cluster, or in a distribution where each cluster contained only
1 to 2 objects, making it impossible to perform labeling.
AP50 and AP75 mean that the Intersection over Union (IoU)
threshold used to calculate AP is 50% and 75%, respectively,
and the higher these numbers, the stricter the evaluation metric.
The AP in the table is the average value after calculating
the AP by changing the IoU threshold from 0.50 to 0.95 in
increments of 0.05. The time required in the table indicates the
time it took to create the training data (= 4578+1309 = 5887
annotations) for each method.

IX. DISCUSSION

A. Comparison between Baseline and Proposed Method

The recognition accuracy of the worker and handpallet in
all evaluation metrics was somewhat superior in the baseline
method compared to the proposed method, with a difference
of up to 17.5pt at maximum. However, in some evaluation
metrics, values close to the baseline were obtained; for ex-
ample, in the combination of RAFT, SimSiam, UMAP, and
K-Means of the proposed method, the AP50 of the worker
was about 4pt of the baseline. The main reason for the
proposed method not reaching the accuracy of the baseline
is attributed to errors in optical flow estimation and noise
inclusion in the generated clusters, resulting in some incorrect
annotation results being included in the dataset, thus degrading
the quality of the training data. Regarding the time taken for
annotation, the baseline method took 626 minutes, whereas
the proposed method was completed within a maximum of
24 minutes, demonstrating the effectiveness of the proposed
method. In every combination of results obtained, the time
required was reduced by over 96% compared to the baseline,
and the highest-performing combination of RAFT, SimSiam,
UMAP, and K-Means achieved a reduction of about 98.6%.
In addition, in the present task, objects other than those that
were clearly misclassified or of poor quality were not excluded
and were labelled as they were. If the annotator performed the
exclusion task more carefully, the quality of the dataset could
be improved in exchange for the increased work time. There
exists a trade-off between working time and dataset quality,
necessitating adjustment according to the use case.

B. Comparison of Different Combinations of Method in each
Component

In this experiment, we found that RAFT, SimSiam, UMAP,
and K-Means generally yielded the highest accuracy metrics.
Conversely, when DBSCAN was used in three out of four
configurations, it either led to the formation of a single
dominant cluster or distributed objects evenly across multiple
clusters, with each cluster containing only 1-2 items. This
resulted in ineffective groupings. DBSCAN’s density-based
approach often groups loosely related objects into a single
cluster if these clusters are dense and widespread, which
likely contributed to this issue. Furthermore, UMAP effec-
tively maintains both local and global data structures during
dimension reduction, preserving the overall structure post-
reduction. On the other hand, PCA focuses on maximizing data
variance for dimension reduction, which may have led to the
collapse of feature distribution when used in combination with
certain encoders. Interestingly, configurations using DBSCAN
with ViTAE as the encoder underperformed, whereas those
with SimSiam achieved more accurate groupings. This is likely
because SimSiam is specifically trained to cluster similar
objects closely in feature space, while ViTAE relies on a
simple reconstruction loss, enhancing SimSiam’s ability to
densely cluster similar objects and distinctly separate different
ones. Moreover, our analysis revealed that the most successful



TABLE I
COMPARISON OF PERFORMANCE AND TIME REQUIRED BETWEEN THE BASELINE AND THE PROPOSED METHOD

Method AP-Worker AP-handpallet AP-Total
Segmentation Encoding Clustering Time [min] AP AP50 AP75 AP AP50 AP75 AP AP50 AP75

K-Means 8.97 30.115 63.269 22.073 16.103 34.205 12.851 23.109 48.737 17.462UMAP DBSCAN 23.8 27.341 56.780 22.120 13.951 32.781 9.280 20.646 44.780 15.700
K-Means 7.81 28.888 57.592 23.359 13.776 30.411 9.257 21.332 44.001 16.308SimSiam

PCA DBSCAN - - - -
K-Means 20.5 29.498 60.357 23.081 11.325 23.202 9.033 20.412 41.779 16.057UMAP DBSCAN - - - -
K-Means 17.1 29.917 59.321 25.096 12.169 31.289 8.856 21.043 45.305 16.976

RAFT

ViTAE
PCA DBSCAN - - - -

Manual 626 37.741 67.497 36.478 24.917 51.558 21.316 31.329 59.528 28.897

Fig. 10. 2D Mapping of the embedded objects

accuracy outcomes were obtained with configurations incorpo-
rating SimSiam, underscoring its pivotal role in our proposed
method. Additionally, configurations requiring less than 10
minutes predominantly included SimSiam as the encoder. This
efficiency is attributed to SimSiam’s high mapping accuracy
in feature space, which reduced the time needed for noise data
removal in our method’s labeling process. Lastly, we observed
that configurations using DBSCAN for clustering, even with
SimSiam as the encoder, necessitated longer processing times.
This is due to DBSCAN’s characteristic of forming clusters
without predefined limits, leading to a greater number of
clusters and consequently, an increased workload of annotation
task.

C. Analysis of Clustering Results

To check the distribution of clustered objects, we com-
pressed the embedding representation using UMAP with an
output dimension of 2 and performed 2D mapping and clus-
tering using DBSCAN as Fig. 10 shows. We also selected four
classes from it and displayed representative objects belonging
to those classes and the label that should be assigned to the
class. The proposed method maps similar objects to similar
embedding representations and successfully creates clusters
of objects that are believed to belong to the same class. We
can complete labeling of all objects belonging to each cluster
by labeling the cluster just once. We believe this feature of
the proposed method significantly contributes to reducing the
workload for annotation.

D. Issues with Segmentation

Our method struggles with multi-semantic segmentation,
causing unclear labels as in Fig. 11, like ”worker+packet” or

Fig. 11. Example of the segmentation results containing multiple semantics

Fig. 12. Example of the segmentation in the warehouse using SAM

”worker+handpallet” scenarios. In optical flow based object
segmentation, challenges arise when multiple objects closely
move together, such as in scenarios like ”a worker in a
warehouse with a handpallet”. A straightforward solution
involves discarding segmentation results with mixed semantics
and generating new segmentations until required annotations
are obtained, leveraging the fully automatic execution of our
proposed method to avoid additional costs. Another limitation
of our method is segmenting only moving objects. We propose
integrating with models like Segment Anything Model (SAM)
[30], illustrated in Fig. 12, which segments both moving and
stationary objects and can be improved by parameter tuning
or method combinations.

X. CONCLUSION

In this paper, we addressed digitalization challenges in
logistics warehouses by developing a semi-automated frame-
work. Our approach involved setting up an extensive camera
network to enhance data collection, focusing on capturing
object movements, analyzing truck berth operations, and uti-
lizing instance segmentation for berth utilization assessment.
The proposed semi-automated digitalization framework uti-
lizes optical flow for object segmentation and representation
learning to significantly reduce the annotation workload. The
semi-automatically trained worker and handpallet recognition
model showed lower accuracy compared to manually anno-
tated datasets, but it expedited model creation by 98.6%.
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