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Abstract—The manual creation of a ceiling plan consumes
many human resources to confirm the current state of existing
buildings for the renovation. Especially the positions and the
types of existing fixtures are important. In this paper, we propose
a synthesis method for a panoramic ceiling image using a video
shot by an omnidirectional camera. We utilize a Visual SLAM
method to map the positions of omnidirectional video frames
including the ceiling. We prioritize the clear depiction of fixture
outlines for easier identification of the types of ceiling fixtures.
To draw clear fixture outlines in the resulting image, each
fixture is referred from the single video frame that captures it
most clearly. In the experiment, we collected an omnidirectional
video in the indoor area of approximately 273 square meters
with multiple rooms. We evaluated the synthesized image for
positional accuracy of the ceiling fixtures, and our proposed
method demonstrated higher accuracy compared to the baseline.

Index Terms—Omnidirectional Camera, Visual SLAM, Image
Synthesis, Ceiling Plan

I. INTRODUCTION

The utilization of three-dimensional (3D) models of build-
ings such as Building Information Modeling (BIM) and
Construction Information Modeling (CIM) contributes to the
efficiency of design and construction management [1]. There
are numerous studies that have been conducted to explore the
further utilization of these models after construction [2]–[4].
However, many existing buildings were constructed using two-
dimensional (2D) blueprints. Especially in buildings that have
been in operation for a long time, there are often cases where
the contents of past facility renovations are not reflected or
where blueprints are lost. It is rare to obtain blueprints that
accurately reflect the current status of existing buildings.

When conducting electrical installation work during build-
ing facility renovations, a ceiling plan reflecting the current
state is required. A ceiling plan is a blueprint that includes
ceiling fixtures such as lighting fixtures, sprinklers, and ceiling
access panels. Especially the positions and the types of fixtures
are important. It is used for cost estimation, parts ordering, and
project planning before construction. If an accurate ceiling
plan reflecting the current state does not exist, the worker
typically creates it without using tools before the renovation.

Fig. 1. Accuracy difference of ceiling fixture positions

The manual creation of a ceiling plan consumes many human
resources, takes much time, and is not accurate in most cases.
Fig. 1 shows the difference in positional accuracy of fixtures
between the manual creation and the generation with a 3D
laser scanner. When a worker creates a ceiling plan with visual
confirmation, a lighting fixture and a sprinkler are overlooked.
A 3D laser scanner can accurately measure ceiling fixtures.
However, it is used only in limited construction sites because
of its high cost and the requirement of 3D reconstruction
knowledge to operate it.

In this study, we propose a synthesis method to generate
a panoramic ceiling image using a video shot by an omni-
directional camera as shown in Fig. 2. A panoramic ceiling
image is synthesized through some computer vision processes
detailed in chapter III. For easier identification of the types
of ceiling fixtures, the clear depiction of fixture outlines are
prioritized. To draw clear fixture outlines in the resulting
image, each fixture is referred from a single video frame
that captures it most clearly. We use an omnidirectional video
shot while walking underneath the ceiling for synthesis. A
panoramic ceiling image captures all wide areas of the ceiling
surface. Workers can easily identify the types of fixtures on a
panoramic ceiling image because of their clearness. They can



Fig. 2. Process of proposed method

generate a ceiling plan with it more easily.
We utilize a Visual Simultaneous Localization and Mapping

(SLAM) method to map the positions of omnidirectional video
frames including the ceiling. Omnidirectional cameras can
capture a ceiling surface faster and cost lower than 3D laser
scanners. The omnidirectional videos capture not only the
ceiling surface but also the floor, walls, and everything visible
from the camera position. Visual SLAM can estimate the
shooting position and orientation more accurately, because of
numerous image feature points captured in the frames of the
omnidirectional video.

In the experiment, we collected omnidirectional videos in
2 indoor environments. One is an area of approximately 273
square meters with multiple rooms, the other is an open space
of approximately 86 square meters. The synthesized image
was evaluated for positional and shape accuracy of the ceiling
fixtures. Our proposed method demonstrated higher accuracy
compared to the commercial products’ baseline.

II. RELATED WORK

A. Applied Research of Visual SLAM with Omnidirectional
Video

There is a study that applied Visual SLAM to the driving
assistance of electric wheelchairs [5]. To perceive the sur-
rounding environment of the wheelchair, camera poses and the
sparse 3D model was generated using Visual SLAM based on
omnidirectional videos.

Kayukawa et al. conducted a study that generates navigation
movies walking in multi-level buildings automatically. [6].
They used Visual SLAM to estimate relative camera positions
and orientations for each frame of the omnidirectional movie
and prepared for generating the navigation movies.

B. Studies on Modeling Indoor Spaces with Omnidirectional
Images

There has been active research in estimating a room layout
from a single omnidirectional image [7]–[10]. However, the
modeling coverage is limited when using only a single om-
nidirectional image, and it is not possible to measure large
indoor spaces accurately.

Wang et al. conducted a study on layout estimation by con-
sidering the camera positions and orientations from two omni-
directional images to improve the accuracy of the estimation
[11]. However, measuring large spaces such as commercial
facilities or offices is not feasible. Additionally, if estimation
is possible in narrow indoor spaces, it is not expected to
achieve the panoramic ceiling image which is high-resolution
and visually clear.

In the commercial software Matterport [12], it is possible
to generate a panoramic ceiling image using multiple omni-
directional images captured at different locations. However,
the successful generation of a high-quality image requires
knowledge of the 3D reconstruction from multiple images.
Additionally, the resulting panoramic ceiling image generated
by Matterport may be lower resolution and have discontinuities
in ceiling fixtures across captured images. It is difficult to
determine the types of ceiling fixtures from it accurately.

Our proposed method is applicable even in a large environ-
ment. Shooting an omnidirectional video takes shorter time
compared with capturing multiple images at each location.
Furthermore, to improve the visibility of ceiling fixtures,
our proposed method considers the clear depiction of fixture
outlines.

III. PANORAMIC CEILING IMAGE SYNTHESIS

In our proposed method, we first shoot a video of an
indoor environment using an omnidirectional camera and then
estimate the camera positions and orientations for each frame
using a Visual SLAM. Perspective-transformed images called
”ceiling images” can be generated from each frame using the
estimation results of the camera positions and orientations.
Next, we detect rectangular and circular ceiling fixtures in
the ceiling images using OpenCV. Then, extraction of the
same fixtures across the ceiling images is conducted based
on the criteria and we search for the image that captures those
fixtures most clearly. Finally, we synthesize the panoramic
ceiling image prioritizing the detected fixture outlines using
positional relationship of ceiling images. For the estimation
process of the orientations, we have to start the shooting from
a location where a known-sized rectangular fixture is placed on



Fig. 3. An azimuth angle θ and an elevation angle in a camera cordinate
system (a) and an equrectangular image (b)

the ceiling. We explain a detailed description of our proposed
method.

A. Function of Perspective-transformation

We explain the function that generates a perspective-
transformed image from an equirectangular image with dimen-
sions H×W pixels. It is used to estimate camera positions and
orientations and in the process of generating ceiling images.
The resulting image is generated by mapping each pixel to its
corresponding pixel on the equirectangular image.

We consider two coordinate systems: the camera coordinate
system, where the Z-axis aligns with the optical axis during
the equirectangular image capture, and the zenith coordinate
system, which shares the same origin as the camera coordinate
system, with the positive Z-direction pointing towards the
zenith. The rotation matrix from the zenith coordinate system
to the camera coordinate system is denoted as R. We define
Pz as the set of points in the zenith coordinate system that
represents each pixel of the resulting image. The resulting
image maps each pixel to a plane in the zenith coordinate
system, where the plane is defined by Z = d in millimeters
and each pixel covers an area of a square with M millimeters
long sides. The Pz (xz, yz, zz) satisfies equation (1).
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We denote the representation of Pz in the camera coordinate
system as Pc. Pc is expressed with the rotation matrix R by
equation (2).

Pc = RPz (2)

We map the Pc (xc, yc, zc) in the camera coordinate system
to corresponding Pe (ue, ve) on the equirectangular image,
using the azimuth angle θ and elevation angle ϕ as shown in
Fig. 3. The values of each θ and ϕ are expressed by equations
(3) and (4). 
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We generate the perspective-transformed image with dimen-
sions H ×W/2 pixels based on the correspondence between
Pe and Pz .

In this paper, we can generate a perspective-transformed
image from an omnidirectional image using an equirectangular
projection by providing the parameters (R, d,M).

B. Estimation of Camera Pose and Orientation Using Visual
SLAM and Adjustment

In this study, we utilize OpenVSLAM [13] for the estima-
tion of camera positions and orientations in an omnidirectional
video. Among the outputs of OpenVSLAM, our proposed
method uses the following three values. The index k repre-
sents the number of the keyframes inserted when there is a
significant change in the field of view.

• The shooting positions of each keyframe pck which is
represented in the 3D reconstruction coordinate system
(SLAM coordinate system)

• The rotation matrices Rck which represents the transfor-
mation from the SLAM coordinate system to the camera
coordinate system in each keyframe

• The 3D point cloud PC which is composed of image
feature points represented in the SLAM coordinate sys-
tem

However, the basis of the SLAM coordinate system is
determined by the initial camera tilt in the first frame and the
scale of the cordinate system and the real world is unknown.
The rotation matrix R from the zenith coordinate system to
the camera coordinate system and the distance d = hk in
millimeters from the camera position to the ceiling surface are
required for generating a ceiling image. We need to estimate
and adjust the tilt and the scale of the SLAM coordinate
system.

1) Adjustment of SLAM Cordinate System Tilt: We estimate
the zenith direction in the first frame of the omnidirectional
video and rotate the shooting positions pck, rotation ma-
trices Rck, and 3D point cloud PC. The zenith direction
is estimated through two procedures. The first procedure is
calcurating the zenith direction using a positional relationship
of rectangle vertices on the ceiling surface captured in the first
frame. The second procedure is estimation of the ceiling plane
using the 3D point cloud PC. We adjust the tilt of the SLAM
coordinate system based on its inclination.

Estimating Zenith Direction Using Rectangles in Image:
First, we need to generate a perspective-transformed image
from the first frame of the omnidirectional video. We do
not consider the rotation of the camera coordinate system
and set the parameter R as the identity matrix. Assuming
a typical office ceiling height of 2800 millimeters and the
camera position height of 1000 millimeters above the floor, we



Fig. 4. Vertex filters

Fig. 5. Criteria of orientation transformation angles

set the parameter d = 1800 in millimeters. To ensure that the
ceiling fixture of the rectangle is captured, the scale factor M
is set as M = 6000/H in millimeters per pixel to capture an
area of approximately 6000 millimeters square in the resulting
image. H represents the height of the input image in pixels.

We utilize OpenCV to detect the rectangular objects in
the generated image and estimate the zenith direction using
one of them. We apply the Prewitt filter [14] to the vicinity
area of each vertex v (= 0, 1, 2, 3) of the rectangle, and de-
note the resulting image as Iv (x, y). To accurately capture
the vertices of the rectangle, we make 3600 vertex filters
En (n = 1, 2, ..., 3600) with dimensions He × We pixels, as
shown in Fig. 4. The scores representing how the pixel is the
likelihood of a vertex are calculated in each pixel of Iv (x, y)
according to equation (5). We consider the pixel (x̂, ŷ) with
the highest score as the vertex, as stated in equation (6).

f (I (x, y) , En) =

We
2∑

i=−We
2

He
2∑

j=−He
2

Iv (x+ i, y + j)En (i, j) (5)

x̂, ŷ, n̂ = argmax
x,y,n

f (Iv (x, y) , En) (6)

We repeatedly determine the orientation transformation an-
gles (Euler angles) that make the rectangular object a true
rectangle, based on the positions of its vertices. The orientation
transformation angles are calculated each time based on the
following criteria as shown in Fig. 5.

• The average difference between the angles of the four
vertices and their corresponding ideal angles.

• The ratio of the two corresponding edges on the left and
right sides (L1/L2).

• The ratio of the two corresponding edges on the top and
bottom sides (l1/l2).

Fig. 6. Progress of the orientation transformation

This process continues until the difference in transformation
angles becomes smaller than a predefined threshold or a certain
number of iterations is reached. At that point, we consider
the orientation as the zenith direction. Each calculated angle
is multiplied by −0.98−n + 2 to achieve convergence in
the orientation transformation (n(0, 1, ..., 34) represents the
number of iterations). We use this factor to increase the
transformation angles when the number of iterations is small.
Fig. 6 shows the progress of the orientation transformation at
each iteration.

We denote the rotation matrix from the initial orientation
to the final orientation after the iterative process as Ri.
For further processing, we rotate the shooting positions pck,
rotation matrices Rck, and 3D point cloud PC using Ri as
follows:

pcik = pckRi, (7)

Rcik = RckRi (8)

PCi = PCRi (9)

Estimating Zenith Direction Using Point Cloud: There
are cases where it is difficult to detect the accurate rectangular
vertices in variable lighting in image processing. Additionally,
image distortion can also make it challenging to determine
the precise zenith direction. Therefore, we estimate the zenith
direction using the 3D point cloud PC from Visual SLAM.
Ceiling fixtures, such as lighting elements, often show different
brightness from the ceiling surface. These differences can be
detected as feature points in the image. We can extract the
ceiling plane from the 3D point cloud PCi by using numerous
feature points on the ceiling surface.

Before the extraction process, Radius Outlier Removal is
applied to all points in the 3D point cloud PCi to eliminate
noise. The removal is based on the number of points within a
sphere centered at each point. For the extraction process, we
utilize Random Sample Consensus (RANSAC) [15]. RANSAC
randomly selects initial samples, which may lead to the
extraction of surfaces other than the ceiling plane. To address
this issue, we apply RANSAC with a 3D plane model to
a subset of the 3D point cloud PCi, specifically the upper
1/4 portion representing the ceiling side. This approach helps
ensure the accurate extraction of the ceiling plane.

The SLAM coordinate system is rotated based on the
estimated ceiling plane so that its Z-axis becomes parallel to
the normal of the ceiling plane. The rotation matrix for this
transformation is denoted as Rp. For further processing, we



rotate the shooting positions pcik, rotation matrices Rcik, and
3D point cloud PCi using Rp as follows:

pcpk = pcikRp (10)

Rcpk = RcikRp (11)

PCp = PCiRp (12)

2) Adjustment of SLAM Cordinate System Scale: The scale
between the SLAM coordinate system and the real world is
unknown. We estimate the scale based on the corresponding
distances of the SLAM cordinate system and the real world.
From the result of the estimated scale, shooting positions pcpk
in the SLAM coordinate system are adjusted so that one unit
in the coordinate system corresponds to 1 millimeter.

We denote the distance from the origin (the shooting po-
sition of the first frame) to the estimated ceiling plane in
the VSLAM coordinate system as hv . In the real world, the
distance from the shooting position of the first frame to the
ceiling plane is denoted as h1 in millimeters. To calculate h1,
we need to generate a perspective-transformed image from
the first frame of the omnidirectional video. For this process,
the parameters are set as follows: R = Rcpk, d = 1800
in millimeters, and M = 6000/H in millimeters per pixel,
similar to the settings in estimation of the zenith direction
using image processing(section III-B1). We measure the length
Dp in pixels of the ceiling fixture in the generated perspective-
transformed image and the actual length Dr in millimeters and
calculate h1 from equation(13).

h1 = d
Dr

DpM
(13)

The scale S is calculated as follows:

S =
h1

hv
(14)

For the process of generating the ceiling image, the estimated
shooting positions pcpk are normalized based on the scale S
as follows:

pcsk = pcpk × S (15)

C. Generating Ceiling Images
For each keyframe, a zenith-directed perspective-

transformed image called ”ceiling image” are generated
to synthesize the panoramic ceiling image. The generation
of ceiling images use the estimated shooting position
pcsk (xcsk, ycsk, zcsk) and the rotation matrix Rcpk. The
distance hk from the shooting position to the ceiling surface
is represented by equation(16).

hk = h1 − zcsk (16)

We set the length per pixel in the resulting ceiling image as
Mc. The zenith-directed perspective-transformed images are
generated with parameters: R = Rcpk, d = hk, and M = Mc

in each keyframe. This process allows us to generate ceiling
images with dimentions Hc ×Wc pixels.

Fig. 7. Example of detected fixture image

D. Detecting Rectangular and Circular Ceiling Fixtures

For each ceiling image, we perform the detection of rect-
angular and circular ceiling fixtures to draw clear fixture
outlines in the panoramic ceiling image. The ceiling images
are converted to an 8-bit grayscale image using OpenCV.
Then, the grayscale images are applied thresholding using 21
different threshold values ranging from 30 to 230 in increments
of 10. We utilize OpenCV to extract contours and find the
minimum bounding rectangles and minimum enclosing circles
in each binary image obtained from thresholding. From the
obtained rectangles and circles, extraction of fixture candidates
is needed. To determine the fixtures from the candidates,
we consider the object that is consistently identified across
multiple thresholded binary images as a fixture. By using
multiple threshold values, we enhance the robustness of the
recognition process against variations in lighting conditions
and color tones.

For the minimum bounding rectangles, we calcurate the area
Sr, the perimeter length lr, the length of the contour lrc, the
area inside the contour Src, the number of black pixels inside
the rectangles Nrb and the number of white pixels inside the
rectangles Nrw. We denote the area of the ceiling images as
Sci = HcWc. Any candidate that meets at least one of the
following conditions is excluded, and the remaining ones are
considered as rectangular fixture candidates.

• 0 ≤ Sr/Sci ≤ 0.005 or 0.6 ≤ Sr/Sci ≤ 1.0 (to remove
noise).

• Rectangles that may be partially out of the image (to
remove fixtures that are not fully captured).

• lrc/lr ≤ 0.8 or 1.2 ≤ lrc/lr (to remove non-rectangular
objects).

• Src/Sr ≤ 0.8 (to remove non-rectangular objects).
• max (Nrb, Nrw) /Sr ≤ 0.8 (to remove rectangles with

non-uniform inside).

For the minimum enclosing circles, we calcurate the area Sc,
the perimeter length lc, the length of the contour lcc, the
area inside the contour Scc, the number of black pixels inside
the rectangles Ncb and the number of white pixels inside the
rectangles Ncw. Any candidate that meets at least one of the
following conditions is excluded, and the remaining ones are



considered as circular fixture candidates.
• 0 ≤ Sc/Sci ≤ 0.001 or 0.6 ≤ Sc/Sci ≤ 1.0 (to remove

noise).
• Circles that may be partially out of the image (to remove

fixtures that are not fully captured).
• lcc/lc ≤ 0.8 or 1.2 ≤ lcc/lc (to remove non-circular

objects).
• Scc/Sc ≤ 0.8 (to remove non-circular objects).
• max (Ncb, Ncw) /Sc ≤ 0.8 (to remove circles with non-

uniform inside).
We determine if the fixture candidate is a fixture based on
the distance between the centroids of fixture candidates in
the multiple binary images. If the distance is within 50
millimeters, fixture candidates are considered as the same
candidates and decided as fixtures. Fig. 7 shows an example
of the detected fixture image.

E. Extract and Search the Clearest Ceiling Fixture Outlines
We want to draw clearest outline each of fixtures from

a single ceiling image in the synthesized panoramic ceiling
image. Firstly, we extract the identical ceiling fixtures from
the detected fixtures across different ceiling images, since the
ceiling images overlap. Next, we search for the ceiling image
that captures the fixture outline most clearly from the images
which show the identical one.

1) Extract Ceiling Fixtures Across the Ceiling Images: We
extract the same ceiling fixtures from different ceiling images.
The center coordinates of each ceiling image are (xcsk, ycsk)
based on the shooting position pcsk (xcsk, ycsk, zcsk). The
positions of detected ceiling fixtures are calculated based on
the positions of the ceiling images. We consider the pairs of
ceiling fixtures that meet the following conditions to be the
identical ceiling fixture.

• The distance between the centroids of two ceiling fixtures
is within 300 millimeters.

• The area ratio between the two ceiling fixtures is between
0.8 and 1.2.

If the centroid of one ceiling fixture is enclosed within the
outline of another ceiling fixture, we compare the areas of
them. The one with the smaller area is excluded from the
set of extracted ceiling fixtures. This process ensures that the
set includes only the detected ceiling fixtures that are fully
captured. We need to exclude the detected ceiling fixtures that
are partly captured as shown in Fig. 8.

2) Search for the Clearest Ceiling Fixture Outlines: We
search for the ceiling image that captures the ceiling fixture
outline most clearly from the ceiling images capturing the
same ceiling fixture. The closer the ceiling fixture is to the
center of the ceiling image, the less distortion it is affected by.
Therefore, we consider that the ceiling fixture outline captured
near the center of the ceiling image is clearer. Among the
ceiling fixtures considered as the same one, we search for the
ceiling image where the distance from the center of the image
to the centroid of the ceiling fixture is the shortest. In other
words, for each ceiling fixture, the image where the fixture is
closer to the center is searched.

Fig. 8. Angles of view that capture a fixture partly (a) and wholly (b)

F. Synthesize Panoramic Ceiling Image Prioritizing Fixture
Outlines

We generate a panoramic ceiling image that shows the
clear depiction of fixture outlines, based on the positions of
each ceiling image and the searched ceiling fixture outlines.
Firstly, the dimensions (width and height) in pixels of the
resulting panoramic ceiling image is calculated. Next, we
perform Voronoi partitioning on each pixel based on the center
positions of the ceiling images. For each region generated
by the partitioning, the pixel values are copied from the
corresponding ceiling image. However, for the area of de-
tected ceiling fixtures and their surroundings, the pixel values
are copied from the corresponding searched ceiling images.
Through this process, we can synthesize a panoramic ceiling
image that shows clear fixture outlines.

IV. EXPERIMENT AND EVALUATION

We collected data for the proposed method and baseline in 2
indoor environments. We evaluated the synthesized panoramic
ceiling image for positional and shape accuracy of the ceiling
fixtures.

A. Baseline

We used Matterport, the commercial software developed by
Matterport Inc., as the baseline for comparison. Matterport
enables us to capture indoor spaces using 3D laser scanners,
omnidirectional cameras, smartphones, and other devices. It
requires fundamental knowledge of 3D reconstruction for
accurate capture. In the experiment, we used the same om-
nidirectional camera as the proposed method. However, the
input for Matterport is images, not videos.

We captured indoor spaces with continuity in capturing
positions. While capturing, we needed to connect the om-
nidirectional camera to a smartphone app via Wi-Fi. After
capturing the omnidirectional images, we uploaded them from
the smartphone app to the cloud for processing. The outputs
of the processing are walkthroughs of the measured indoor
space, 3D models, panoramic images of the floor and ceiling
surfaces, etc.

B. Collecting Data

We collected data in two different indoor environments.
The first environment is a workspace area of approximately



Fig. 9. Experiment environments

TABLE I
DETAIL OF COLLECTED DATA

Environment Environment 1 Environment 2

Ours

Video length [seconds] 211 91
Frame rate [fps] 29.97
Resolution [pix] 3840×1920

Collection time [minutes] 3.5 1.5

Matterport
Number of images 100 45

Resolution [pix] 6720×3360
Collection time [minutes] 57 27

273 square meters, which contains multiple individual rooms,
desks, monitors, chairs, and other furnishings, as shown in
Fig. 9(a). The second environment is an open space of ap-
proximately 86 square meters, which is a computer room with
aligned desks with computers on top, as shown in Fig. 9(b).

We collected data using an omnidirectional camera RICOH
THETA Z1 for both the proposed method and the baseline.
Table I provides details about the collected data. We directed
one of the camera lenses towards the ceiling to ensure that
one lens captured the ceiling surface independently when we
shot the omnidirectional video for the proposed method. There
might be differences in brightness and color tone between
the lenses. We used a standalone tripod with a length of
approximately 126 centimeters to ensure that the camera lenses
were oriented horizontally while capturing the omnidirectional
images for the baseline.

As ground truth data, we used a FARO FocusM70 3D laser
scanner to obtain a 3D point cloud of the indoor space. The
ceiling part was extracted from the acquired 3D point cloud
to generate the ground truth panoramic ceiling image.

C. Evaluation Method

1) Positional Accuracy: We evaluate the positional accu-
racy of the panoramic ceiling image based on the positions
of the four corners of rectangular light fixtures on the ceiling.
The positions of the corners of rectangular light fixtures are
marked manually. We perform rotation, scaling, and translation
operations on the marked positions of each panoramic ceiling
image. The accuracy of the positions are evaluated that mini-
mize the average positional error with the ground truth data.

2) Shape Accuracy: We evaluate whether the fixtures in
the panoramic ceiling image have the correct shape. We
calcurate the interior angles of all rectangular light fixtures,
then calculate the mean and standard deviation of the set of

TABLE II
EVALUATION RESULTS

Environment Environment 1 Environment 2
Method Ours Baseline Ours Baseline

Positional Error [mm] 53.09 126.24 14.47 57.55
Angle Mean [deg] 90.00 90.00 90.00 90.00

Angle Standard Deviation [deg] 0.95 4.14 0.68 3.17

all angles. All interior angles of the rectangular light fixtures
are 90 degrees. If the standard deviation is small, it indicates
that the panoramic ceiling image reflects the shapes of the
fixtures outlines accurately.

D. Results

Fig. 10 shows the panoramic ceiling images synthesized
using the proposed method or the baseline. In the proposed
method, we set Mc = 2 to achieve a scale of 2 millimeters
per pixel. The image synthesized by the proposed method
represents the indoor space more accurately, and the outlines
of the fixtures are clearer compared to the baseline.

Table II provides the evaluation results. The proposed
method demonstrated higher positional accuracy compared to
the baseline. We used videos as input in the proposed method,
while the baseline used high-resolution images. The use of
continuous video likely contributed to its higher accuracy
compared to the use of high-resolution images.

The standard deviation of the shape accuracy is smaller for
the proposed method as shown in table II. This indicates that it
accurately captures the shapes of the rectangular light fixtures
in the proposed panoramic ceiling image. Synthesizing the
fixture outlines from a single ceiling image while the synthesis
of the panoramic ceiling image contributed to the accuracy of
the shapes.

Fig. 11 shows the panoramic ceiling image with the seams
between ceiling images indicated by red lines. The proposed
method is achieved to capture the fixture outlines seamlessly
in the panoramic ceiling image.

V. CONCLUSION

In this paper, we proposed a panoramic ceiling image
synthesis method that prioritizes the fixture outlines using
omnidirectional videos. In our proposed method, we first
estimated the shooting positions and orientations for each
keyframe using Visual SLAM and then adjusted the estimation
results. Based on the shooting positions and orientations, the
panoramic ceiling image was synthesized from the ceiling
images. We prioritized the positions of the detected fixture
outlines for easier identification of the types of ceiling fixtures.

In the experiment, we synthesized panoramic ceiling im-
ages in two different indoor environments. As a result, the
panoramic ceiling images synthesized with our proposed
method are more accurate than those with the baseline. More-
over, the workers at the construction site can create a ceiling
plan in a shorter time using our method, because the time for
shooting is very short.

We confirmed that it is possible to synthesize panoramic
ceiling images prioritizing the fixture outlines. However, it



Fig. 10. (a) Ours, (b) Matterport in environment 1, (c) Ours, (d) Matterport in environment 2

Fig. 11. Seams between ceiling images

is necessary to establish recognition technology for ceiling
fixtures. There are many kinds of ceiling fixtures and various
types with different sizes and shapes. It is a challenge to
establish a recognition technology that can handle unknown
ceiling fixtures. We focused on the ceiling surface in this paper.
We will apply this technology to other surfaces such as floors
and walls.
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