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Abstract—The rapid growth of e-commerce, rising consumer 
expectations, and labor shortages in Japan pose challenges for 
logistics warehouse optimization. While automation has advanced 
outbound operations, inbound processes remain inefficient. This 
study presents a comprehensive approach to digitizing and 
optimizing large-scale logistics warehouses, with a case study at 
TRUSCO NAKAYAMA Corp. in partnership with Nagoya 
University. Key technologies include a large-scale camera array, 
multi-camera object tracking, and smartphone-based task 
estimation. Our contributions include real-time tracking of 
personnel and packages, cooperative annotation for improved 
object recognition, and synthetic data augmentation. Additionally, 
truck berth analysis and indoor localization enhance operational 
efficiency. To optimize worker shifts and warehouse layout, we 
apply Factorization Machine Quantum Annealing (FMQA), 
achieving a 37.4% reduction in lead times and a 14.3% decrease 
in labor hours. A visualization tool enables warehouse operators 
to make data-driven decisions. This research demonstrates the 
potential of digital transformation in logistics and provides a 
scalable framework for broader industry adoption.  

Keywords— logistics, warehouse, image recognition, object 
tracking, quantum annealing, simulation 

I. INTRODUCTION 
The rapid growth of e-commerce, rising consumer 

expectations for faster deliveries, and labor shortages in Japan 
pose significant challenges for optimizing logistics warehouse 
efficiency. Despite technological advancements, automation 
efforts have mainly targeted outbound processes, leaving 
inbound operations largely inefficient. 

TRUSCO NAKAYAMA Corp. is a specialized trading 
company that wholesales machinery, tools, logistics equipment, 
and environmental safety products for use in factories and 
construction sites. The company handles approximately 4.5 
million items from over 3,500 manufacturers worldwide and 

manages an inventory of approximately 600k items across 28 
logistics centers throughout Japan. To establish an advanced 
logistics hub, TRUSCO NAKAYAMA entered into a 
comprehensive partnership agreement with Nagoya University 
in 2021 and has been conducting joint research. 

Fig.1 shows perspective photo of our target logistics 
warehouse(1st floor of Planet Tokai) which is one of the 
logistics centers of TRUSCO NAKAYAMA. This paper 
introduces various efforts related to the construction of a digital 
twin for large-scale warehouse optimization. While existing 
research has typically addressed specific components of 
warehouse digitization, such as object tracking, image 
recognition, or workforce scheduling independently, there has 
been limited effort in developing a comprehensive, fully 
integrated system that spans from real-time data acquisition to 
operational optimization. Specifically, most prior studies do not 
evaluate their proposed methods in actual large-scale warehouse 
environments over extended operational periods. To bridge this 
gap, our study proposes and implements an end-to-end 

Fig.1. Perspective photo of target logistics warehouse 



warehouse digitization and optimization system, covering all 
aspects from data collection (camera array and smartphones) 
through integrated analysis (multi-camera tracking and task 
estimation) to operational optimization (quantum annealing-
based shift scheduling). A key novelty of our work is that we 
have successfully deployed and continuously operated this 
comprehensive digital twin-driven system in a real-world large-
scale logistics facility, TRUSCO NAKAYAMA Corp.'s 
logistics center, providing practical validation and insights 
beyond laboratory conditions.  

II. RELATED WORK 
Several studies have explored logistics warehouse 

optimization to enhance operational efficiency. For instance, [1] 
introduces a wide range of research and development efforts 
from the perspective of the Sustainable Development Goals 
(SDGs). Specific approaches include reducing total costs and 
improving efficiency through IoT utilization, visualizing 
inventory using Augmented Reality (AR) technology, 
optimizing processes with QR codes and RFID, leveraging AI 
and chatbots for data collection and analysis, and employing 
automated transport systems. 

Furthermore, [2] has released datasets for image recognition 
aimed at improving Pick & Place efficiency, such as those used 
in the Amazon Picking Challenge [3]. Additionally, [4] focuses 
on achieving autonomous forklifts in warehouses, collecting 
vast amounts of warehouse images, including those of people 
and pallets, to build a pallet database and enhance efficiency 
through deep learning. In [5], the authors highlight the 
importance of positioning systems in warehouse optimization 
and propose a testing and evaluation framework for their 
implementation. [6] has released a large-scale multimodal 
dataset, OpenPack, for packaging work recognition in 
warehouses. 

These studies demonstrate that numerous challenges remain 
in warehouse efficiency optimization, and various research 
efforts continue to address specific issues. We strongly believe 
that data-driven analysis is essential for warehouse optimization. 

In this context, [7] proposes an algorithm model that 
combines YOLOv5[8] and DeepSORT[9] to enable object 
tracking, with the goal of digitizing logistics warehouses. The 
evaluation results indicate great potential for real-world 
warehouse applications, yet practical implementation in actual 
warehouse operations has not yet been realized. 

This study aims to digitize warehouse operations by 
recognizing and tracking large-scale packages and people, as 
well as identifying their behaviors in real-world warehouse 
environments. 

III. DIGITIZATION METHODS FOR LOGISTICS WAREHOUSES 
Fig.2 illustrates data and processes flow of the proposed 

digitization methods for logistics warehouses, which are 
addressed in this study. The following sections provide a 
sequential explanation of each component. 

A. Camera Array Platform 
In this study, the primary target area is the first-floor of the 

warehouse, which has a ceiling height of approximately 6 meters. 
Incoming packages can sometimes be stacked over 2 meters 
high, making it difficult to capture all activities using overhead 
cameras positioned at an oblique angle, as occlusion occurs, 
preventing a complete record of warehouse operations. 

To overcome this limitation, we installed more than 60 wide-
angle network cameras (H.View HV-800G2A5, priced at 
approximately $120 each) on the ceiling of the first-floor 
warehouse, as shown in Fig.1. These cameras are oriented 
vertically downward to record the movements of workers and 
pallets/parcels. Each camera transmits H.264 video streams via 
RTSP, which are then stored in an on-site storage system. 

While Edge AI[10,11] implementation is planned for future 
deployment, we initially opted for full video storage to ensure 
comprehensive data collection. As a result, the recording of 
more than 80 camera feeds generates approximately 1.3 
terabytes of video data per day, totaling over 500TB in 20 
months. 

Fig.2. Data/process flow of digitization methods for logistics warehouse 



 

B. Video Time Synchronization 
Given the large-scale deployment of low-cost surveillance 

cameras, precise hardware-based synchronization among 
cameras is not available. Instead, NTP (Network Time Protocol) 
is employed for time correction. The video feed is recorded at 5 
frames per second (fps), and each image contains a timestamp 
with a resolution of one second. 

To ensure proper time synchronization across frames, we 
utilize optical character recognition(OCR) techniques, where the 
first detected timestamp change serves as a reference point for 
frame alignment. The NTP synchronization is scheduled to run 
once per hour; however, failures in synchronization occasionally 
occur, resulting in timestamp discrepancies of several seconds. 
In such cases, manual adjustments are performed as needed. 

Future research should focus on developing robust 
synchronization techniques to mitigate incidental time drift and 
enhance the reliability of time alignment across multiple camera 
feeds. 

C. Undistortion, Registration and Stiching of Camera Images 

Due to installation constraints, we have placed wide-angle 
cameras with a 110-degree field of view (FOV) unevenly on the 
ceiling of the warehouse. Consequently, distortion correction 
( undistortion ) and registration of camera positions are required. 

For wide-angle camera undistortion, we initially utilized 
OpenCV’s fisheye camera model. However, the significant 
distortion posed a challenge. Therefore, we conducted a study 
on undistortion methods and adopted the Double Sphere Model 
[12], which offers a well-balanced trade-off between speed and 
performance. Nevertheless, the issue of camera distortion 
became apparent only after fixing the cameras to the ceiling, 
leaving unresolved challenges in camera calibration. As an 
important insight gained through experience, we emphasize that 
selecting the appropriate camera model and verifying its 
parameters should be carefully conducted before securing the 
cameras in place. 

The distortion-corrected camera images are used for object 
recognition, and we also implemented image stitching to 
monitor the overall floor conditions. Since each camera covers 
a different area, registration and masking of positions are 

Fig.3. External view and camera array platform of the target logistics warehouse (part of 1st floor). 

External view of a 
5-story logistics building 
(23,989 square meters) 
 
 

Fig.4. Camera image undistortion and stitching 



necessary. For camera position registration, we utilized a 
colorized point cloud of the warehouse floor acquired using 
Leica’s BLK2GO [13] and performed SuperPoint[14] and 
LightGlue feature matching [15] between the images. Fig. 4 
presents the captured camera image (only A2), the undistorted 
camera image, the mask, the map after registration, and the 
results of stitching. During the stitching process, alpha blending 
was applied to overlapping areas of the masked images. As a 
result, workers captured by multiple cameras are blended and 
displayed from different angles. If stitching were performed 
without overlapping camera images, areas further from the 
camera center might not properly represent objects above the 
floor. Thus, alpha blending plays a crucial role in ensuring 
seamless image integration. Fig.5 shows the effect of alpha 
blending which results duplicated worker image on the stitched 
image. 

D. Cooperative Annotation 
To recognize workers, tools, and packages within a logistics 

warehouse using multiple cameras, object detection based on 
deep learning proves to be highly effective. In this study, we 
employ Detectron2 [16] as the object detection model. Given 
that the cameras are installed on the ceiling, leading to a unique 
field of view, and that the logistics warehouse itself represents a 
specialized environment, pre-trained models of Detectron2 do 
not yield satisfactory performance. Consequently, custom 
annotations and trainings are required. 

Furthermore, the distortion introduced by wide-angle 
cameras results in various patterns for workers, tools and 
packages, making exhaustive manual annotation excessively 
time-consuming process. To address this challenge, we take 

advantage of the fixed camera setup and construct a framework 
[17,18] that assists annotation by extracting only moving objects 
using optical flow and leveraging their similarity. 

Details of the framework can be found in the full paper. 
Without the framework, individual objects had to be manually 
annotated and labeled as shown in Fig. 6 (left). With the 
framework, similar images are displayed using a tool, allowing 
annotators to exclude only incorrect images, as shown in Fig. 6 
(right). This significantly accelerates the annotation process. 

Through a technical survey of individual components, we 
determined that RAFT [19] is effective for optical flow-based 
moving object segmentation. Moreover, SimSiam [20] is 
utilized for evaluating the similarity of segmented objects, 
UMAP [21] for dimensionality reduction, and K-Means for 
clustering. As a result, the proposed framework achieves a 98% 
reduction in annotation time while maintaining the same 
annotation volume. However, collaborative annotation may 
result in the annotation of extraneous regions, which poses a 
challenge to recognition performance. 

E. Data Augmentation using Synthetic Images 
In cooperative annotation, unintended annotation errors have 

been observed to degrade recognition performance. One primary 
reason for this degradation is the inclusion of training images 
that lack annotations for detectable objects, despite their 
presence in the scene. 

Fig.5. Stitching with alpha blending 

Fig.6. Manual and Cooperative Annotation Fig.7. Synthetic image generation 



To address this issue and construct accurate and diverse 
annotation datasets, we propose a data augmentation method 
[22] based on synthetic image generation. The overview of this 
method is illustrated in Fig. 7. Specifically, our approach 
synthesizes natural-looking images without unannotated objects 
by overlaying labeled foreground segments onto background 
images that do not contain any detection targets. These 
background images are essential to ensure that no unannotated 
objects remain in the synthesized images. 

To efficiently extract background images without target 
objects, our method leverages the motion information provided 
by RAFT, assuming that target objects exhibit movement. 
Concretely, background frames are collected from randomly 
sampled frames where RAFT did not detect any motion. The 
inclusion of unrelated objects within these frames contributes to 
dataset diversity. Although human verification of a subset of 
frames for each camera is required, the workload is significantly 
reduced compared to manual annotation. The more background 
frames are prepared, the greater the diversity of the generated 
images; however, this also increases the associated workload. 

Furthermore, by utilizing the ceiling-mounted camera setup, 
the method preserves the original positions of the segmented 
foreground objects, ensuring the generation of realistic images. 
Evaluation using video footage from a logistics warehouse 
confirmed that improving dataset reliability directly enhances 
model performance.  

F. Truck Berth Analysis 
In logistics warehouses, truck berths are designated areas 

where trucks enter and exit for loading and unloading cargo. The 
target logistics warehouse in this study has 15 truck berths, with 
five fixed-point cameras installed, each covering three berths. 

To analyze berth occupancy, we first developed a simple 
recognition model to detect the presence of trucks and the status 
of their rear doors (open or closed). As shown in Fig. 8, we 
constructed a system to track the status of each truck over time. 
While warehouse operators had an intuitive understanding of 
truck berth usage, they lacked a systematic method for 
visualizing and quantifying berth utilization. To obtain more 
detailed insights into cargo handling activities, an advanced 
cargo recognition model is required. Since the truck berth 
cameras are installed at an angled perspective, conventional 
object detection models can be applied. However, the diversity 
of cargo types poses a challenge for accurate recognition. To 
address this, we employed instance segmentation to identify 

individual cargo items and performed detailed annotations for 
model training [23]. 

Specifically, annotations were conducted on 2,035 images 
covering 14 target classes, resulting in a total of 193,357 labeled 
instances. The segmentation was performed using Detectron2, 
with the results illustrated in Fig. 9. As detailed in the paper [23], 
we further analyzed the work environment by utilizing the floor 
area extracted from the segmentation results to assess 
operational efficiency. 

G. Multi-Camera Tracking 
To effectively utilize the AI model trained with a large 

number of annotations obtained from subsections D and E, it is 
necessary to integrate recognition results obtained from video 

Fig.8. Recognition and visualization of truck berth status. Bottom graph is a time series of status (empty, close_truck and open_truck). 

Fig.9.  Segmentation result of truck berth 

Fig.10.  Multi-camera tracking result 



image across multiple cameras. For intra-camera tracking, 
existing technologies such as TrackFormer [24] can be 
employed. However, inter-camera tracking presents unique 
challenges due to the use of wide-angle cameras, making direct 
application of conventional methods ineffective. 

To address this issue, we have enhanced ByteTrack [25] by 
refining the selection method for bounding boxes in recognition 
results, thereby developing a practical tracking approach. The 
integrated recognition results of the current warehouse 
environment are used to visualize worker movement trajectories, 
as illustrated in Fig. 10.  

H. Indoor Localization and Task Estimation 
In parallel with warehouse digitization using cameras, we 

also utilize IMU sensors embedded in workers' smartphones to 
conduct indoor positioning and task estimation. Unlike simple 
pedestrian movement, warehouse operations involve various 
tasks, making conventional pedestrian dead reckoning 
ineffective. To address this challenge, we integrate an end-to-
end pedestrian velocity estimation method [26] with a gait-
robust orientation estimation technique [27]. Additionally, by 
incorporating photovoltaic-powered BLE beacons, we employ a 
DualCNN-Transformer model, as illustrated in Fig. 11, to 
achieve high-accuracy indoor positioning within the warehouse 
[28]. 

Warehouse workers primarily engage in three types of tasks: 
inspection, sorting, and transportation. To quantify the 

distribution of these activities, we conducted task estimation 
using smartphone-based motion analysis[29]. Specifically, as 
shown in Fig. 12, six-axis acceleration and angular velocity data 
were collected from smartphones attached to workers' waists. 
Using a 5.12-second sliding window and logistic regression 
based on the features listed in Table I, we achieved an F1-score 
of 0.83 for task estimation. Sample results of task estimation are 
shown in Fig. 13. 

TABLE I.  FEATURES USED IN LOGISTIC REGRESSION 

 Features 

Time 
domain 

Mean, Standard deviation, Maximum, Minimum, IQR 
Sum, Mean absolute change, Energy, Auto regressive, 

Skewness, Kurtosis 
Frequency 
domain Bands energy (0-255 Hz divided into 5 bands) 

 

I. Multi-Camera Storage Area Occupancy Check 
In the 1F inbound area, the ceiling height is 6 meters, 

allowing full-area coverage using ceiling-mounted cameras. 
However, for floors 2F to 5F, where the ceiling height is lower, 
ceiling-mounted cameras would require a large number of units, 
making the setup impractical. From a cost perspective, obliquely 
mounted overhead cameras are preferred. As a result, a single 
camera cannot fully capture the entire storage area due to 
occlusions, necessitating the integration of estimation results 
from multiple cameras. 

In our work [30], we proposed a method to address this issue. 
Specifically, as illustrated in Fig. 14, we apply projective 

Fig.12.  Task estimation using smartphone IMU sensors 

Fig.11.  DualCNN-Transformer 

Fig.13.  Sample results of task estimation. 



transformation to convert images captured by cameras 
surrounding the put-away area into top-down views of the target 
area. Since each camera is affected by occlusions in different 
locations, we integrate the transformed images with varying 
weights to accurately estimate cargo space occupancy for each 
area. 

IV. BLACK BOX OPTIMIZATION WITH QUANTUM ANNEALING 
A Following the digitization of worker movement, the next 

step is to optimize worker shift schedules. Since conducting 
various trials in an actual warehouse would be prohibitively 
expensive, we developed a warehouse operations simulator. 
This simulator takes worker shifts, warehouse layout, and cargo 
information as inputs and simulates warehouse operations to 
output key performance metrics such as lead time for storage 
and total worker labor hours. 

Building upon this simulator, we implement Factorization 
Machine Quantum Annealing (FMQA) [31], a black-box 
optimization technique. Factorization Machines (FM) are 
machine learning models capable of achieving high prediction 
accuracy for sparse input-output combinations, and the resulting 
mathematical model can be optimized using Quantum 
Annealing (QA). 

Fig. 15 illustrates the black-box optimization process 
implemented in [32]. First, we generate a training dataset for the 
warehouse simulator by simulating operations with several 
initial parameter sets (worker shifts). Next, we train an FM 
model on this dataset. The learned mathematical model is then 
converted into a Quadratic Unconstrained Binary Optimization 
(QUBO) formulation, which is used for quantum optimization. 
The optimized worker shift schedule is re-evaluated using the 
simulator, generating additional training data to refine the FM 
model. This iterative process continues, progressively 
improving the optimization results. By applying FMQA to a 
combinatorial optimization problem with 21,300 possible 
configurations, we conducted an iterative optimization process 
using 500 initial data points and 100 iterations of FMQA. As a 
result, the proposed method successfully reduced the lead time 
by up to 37.4%, the residual cargo volume by up to 95.5%, and 
the total labor hours by up to 14.3%, demonstrating the 

effectiveness of the approach in optimizing warehouse 
operations. 

V. VISUALIZATION AND ANALYSIS TOOL 
To integrate the data obtained from the Camera Array 

Platform and Task Estimation, we developed a visualization and 
analysis tool, as illustrated in Fig. 16, enabling warehouse 
personnel to monitor and analyze operations effectively. This 
tool represents workers and cargo as three-dimensional objects, 
allowing users to observe warehouse conditions from any angle 
at any given time. 

Furthermore, the framework provides functionalities for 
visualizing and analyzing worker tasks, cargo dwell times, and 
other operational insights. Continuous data analysis using this 
tool has progressively clarified various challenges within the 
warehouse, facilitating further optimization and operational 
improvements.. 

VI. CONCLUSION 
This paper presents various initiatives we have undertaken 

to digitize and optimize large-scale logistics warehouses. The 
digitization of warehouses is a crucial step in achieving optimal 
logistics, and even the simple act of presenting the obtained data 
to workers through visualization tools has led to numerous 
insights. The current system is implemented using data stored in 
a database, but efforts are underway to enable real-time 
visualization and presentation of warehouse conditions. While 
this study focuses on a specific warehouse as a case example, 
the application of these methods to different warehouses in a 
short period requires the development of various generalization 
mechanisms. 

Fig.14.  Camera images surrounding storage area. 

Fig.15.  Blackbox optimization of warehouse using FMQA. 

Fig.16.  3D Visualization and Analysis tool. 
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