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ABSTRACT
Understanding the characteristics of various urban areas is crucial
for applications such as urban planning, tourism policies, market
analysis, and infection control. Techniques for embedding areas
as vectors in a latent space based on human mobility patterns are
actively researched. Many of these area embedding methods define
areas as points, grids, or polygons on a geospatial plane and then
embed them. However, existing methods do not allow for mutual
transformation between these forms and sizes after the initial em-
bedding. Additionally, if the characteristics of an area change due
to events such as the opening of new buildings, re-embedding is
necessary. Meanwhile, the Word2Vec technique, a representative
word embedding method, has a property called additive composi-
tionality. This property allows for the arithmetic operation of word
meanings through the arithmetic operations of word embeddings.
In this paper, we propose a method to apply this property to existing
area embedding techniques, leveraging it for practical tasks such
as area shape transformation and searching for areas with trends
change.
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• Computing methodologies→Modeling methodologies.
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1 INTRODUCTION
Understanding the functions of areas in a city is crucial for a
wide range of applications, including urban planning[7], market
analysis[5], and tourism policies[12]. Area embedding methods
extract features related to each area and embed them into low-
dimensional vectors in a latent space[4, 6, 9–11, 13, 14]. This allows
for quantitative evaluation of urban functions and tasks such as
area search and classification and mobility prediction, utilizing area
information in downstream models.

Existing area embedding methods first determine the area shapes
and time periods, then embed the data associated with each area for
specific periods into a latent space. The spatial definitions of areas,
such as points, grids, or polygons, vary in size and shape depending
on the dataset and analysis target. However, it is inefficient to re-
learn embeddings every time the required area shapes change for
different applications and datasets. If we can obtain transformed
area embeddings using pre-trained embeddings without additional
training, we can analyze areas in the required shapes as needed,
making the process highly efficient. Additionally, even for the same
area, its characteristics can change over different time periods due
to events such as the opening of new buildings[3]. These changes
are reflected in the area embeddings, but this aspect has not been
analyzed so far. For example, searching for areas where specific
types of buildings have been replaced, as shown in Figure 1, would
be useful for analyzing urban dynamics.

We utilize a property called additive compositionality of area em-
beddings to enable post-hoc transformations of area shapes and the
search for areas with changing trends. Additive compositionality in
word embedding methods allow for arithmetic operations on word
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Figure 1: Utilization of additive compositionality in area embeddings.

meanings through arithmetic operations on embeddings[8]. In this
paper, we verify the additive compositionality of area embeddings
using Area2Vec[10], a Word2Vec-based method for embedding stay
features. Furthermore, we demonstrate that the additive compo-
sitionality of area embeddings can be applied to tasks involving
transforming area shapes and searching areas where trends have
changed due to events.

2 METHODOLOGY
2.1 The hypothesis additive compositionality in

area embedding.
First, we hypothesize additive compositionality in area embeddings.
According to Naito et al., the embedding of a polysemous word𝑤
with 𝑘 meanings𝑤1,𝑤2, ...,𝑤𝑘 are approximated by the weighted
average of the embedding of its meanings. This is known as OR
compositionality in additive compositionality. In other words, if 𝑣𝑤
is the embedding of the polysemous word and 𝑣𝑤1 , 𝑣𝑤1 , ...𝑣𝑤𝑘

are
the embedding of its meanings, the following relationship holds.

𝒗𝒘 ≈
𝑘∑︁
𝑖=1

𝑝 (𝑤𝑖 )
𝑝 (𝑤) 𝒗𝒘𝒊 (1)

𝑝 (𝑤), 𝑝 (𝑤𝑖 ) represent the occurrence frequencies of the polyse-
mous word and its senses in the corpus, respectively. In other words,
the embedding of the polysemous word can be approximated by
the weighted average of the embedding of its senses, with weights
corresponding to their occurrence frequencies.

Here, we consider a hierarchical grid to examine the additive
compositionality in area embeddings. First, suppose a grid super-
grid 𝐺 can be divided into multiple grids 𝑔1, 𝑔2, ..., 𝑔𝑘 . The area of
the super-grid is equal to the sum of the areas of the sub-grids. In
this context, the set of instance 𝑑𝐺 for the super-grid is

𝑑𝐺 = 𝑑𝑔1

⋃
𝑑𝑔2

⋃
...
⋃

𝑑𝑔𝑘 (2)

. Here, an instance 𝑖 ∈ 𝑑𝐺 in the super-grid belongs to one of
𝑑𝑔1 , 𝑑𝑔2 , ..., 𝑑𝑔𝑘 . This is analogous to the relationship between a pol-
ysemous word and its senses, where 𝐺 represents the polysemous
word and 𝑔1, 𝑔2, ..., 𝑔𝑘 represent the senses. Thus, the following

relationship holds.

𝒗𝑮 ≈
𝑘∑︁
𝑖=1

𝑐𝑔𝑖

𝑐𝐺
𝒗𝒈𝒊 (3)

𝑐𝐺 and 𝑐𝑔𝑖 represent the number of instances corresponding to the
super-grid and sub-grids. In other words, the embedding of the
super-grid can be approximated by the weighted average of the
sub-grid embeddings, weighted by the number of instances in each
sub-grid. We call this the hypothesis of additive compositionality
in area embeddings. This hypothesis will be tested in Section 5.

2.2 Transformation of area shapes
Assuming that Equation (3) holds, we consider a method for inter-
changing embeddings of different area shapes. As shown in Figure
1, we obtain the embedding of a polygon that spans multiple grids
from the embeddings of these grids. Assuming that the stay density
within the area is uniform, the number of instances in the inter-
section of the polygon and each grid is proportional to its area.
Therefore, the number of instances in the intersection of a polygon
𝐴 with area 𝑆𝐴 and a grid 𝑔 with area 𝑆𝑔 is estimated as follows.

�𝑐𝑔⋂𝐴 ≈ 𝑐𝑔
𝑆𝐴

⋂
𝑔

𝑆𝑔
(4)

𝑐𝑔 represents the number of instances in grid 𝑔. Therefore, using
Equation (3), the embedding of the polygon 𝐴 is approximated as
the weighted average of the estimated number of instances in the
intersections.

𝒗𝑨 ≈
𝑘∑︁
𝑖=1

�𝑐𝑔𝑖 ⋂𝐴

𝑐𝐴
𝒗𝒈𝒊 , 𝑐𝐴 =

𝑘∑︁
𝑖=1

�𝑐𝑔𝑖 ⋂𝐴 (5)

In this way, using Equation (3) or Equation (5), we obtain em-
beddings with transformed area shapes and sizes post-hoc. Similar
transformations can be applied to other shapes, such as converting
from points to grids, although decomposing into finer shapes is
more challenging.
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2.3 Search for areas with changing trends
Assuming that Equation (3) holds, we consider the embeddings
before and after an event, such as the opening of a new building,
or over time, when the data within a certain area changes. Let the
set of instances before the event be 𝑑𝑏𝑒𝑓 and the set of instances
after the event be 𝑑𝑎𝑓 𝑡 . The instance groups change from 𝑑𝑏𝑒 𝑓 to
𝑑𝑎𝑓 𝑡 , where 𝑑𝑝𝑜𝑠 represents the instances that increased and 𝑑𝑛𝑒𝑔
represents the instances that decreased. In this case, the following
relationship holds:

𝑑𝑎𝑓 𝑡

⋃
𝑑𝑛𝑒𝑔 = 𝑑𝑏𝑒𝑓

⋃
𝑑𝑝𝑜𝑠 (6)

𝑐𝑎𝑓 𝑡 + 𝑐𝑛𝑒𝑔 = 𝑐𝑏𝑒 𝑓 + 𝑐𝑝𝑜𝑠 (7)
Here, 𝑐𝑎𝑓 𝑡 , 𝑐𝑏𝑒 𝑓 , 𝑐𝑝𝑜𝑠 , and 𝑐𝑛𝑒𝑔 represent the number of instances
in each set. Applying Equation (3) to Equation (6), we can write it
as Equation (8):

𝑐𝑎𝑓 𝑡𝒗𝒂𝒇 𝒕 + 𝑐𝑛𝑒𝑔𝒗𝒏𝒆𝒈
𝑐𝑎𝑓 𝑡 + 𝑐𝑛𝑒𝑔

=
𝑐𝑏𝑒 𝑓 𝒗𝒃𝒆𝒇 + 𝑐𝑝𝑜𝑠𝒗𝒑𝒐𝒔

𝑐𝑏𝑒 𝑓 + 𝑐𝑝𝑜𝑠
(8)

Furthermore, by using Equation (7) for simplification, we finally
obtain the following equations:

𝑐𝑝𝑜𝑠𝒗𝒑𝒐𝒔 − 𝑐𝑛𝑒𝑔𝒗𝒏𝒆𝒈 = 𝑐𝑎𝑓 𝑡𝒗𝒂𝒇 𝒕 − 𝑐𝑏𝑒 𝑓 𝒗𝒃𝒆𝒇 (9)

𝒗𝒂𝒇 𝒕 =
𝑐𝑏𝑒𝑓 𝒗𝒃𝒆𝒇 + 𝑐𝑝𝑜𝑠𝒗𝒑𝒐𝒔 − 𝑐𝑛𝑒𝑔𝒗𝒏𝒆𝒈

𝑐𝑏𝑒 𝑓 + 𝑐𝑝𝑜𝑠 − 𝑐𝑛𝑒𝑔
(10)

Equation (9) and (10) represent the relationship between 𝑣𝑝𝑜𝑠 ,
𝑣𝑛𝑒𝑔 and 𝑣𝑏𝑒 𝑓 , 𝑣𝑎𝑓 𝑡 . Therefore, by calculating the left-hand side
for 𝑑𝑝𝑜𝑠 , 𝑑𝑛𝑒𝑔 corresponding to a specific area change, and pre-
computing the right-hand side for all combinations of 𝑑𝑏𝑒𝑓 , 𝑑𝑎𝑓 𝑡 ,
we can use the left-hand side as a query to search the right-hand
side. This allows us to find areas where specific area changes have
occurred. A noteworthy point about Equations (9) and (10) is that
the difference in instance groups can be represented by the differ-
ence in embeddings. In other words, a decrease in area trends can
be represented by a negative embedding.

3 EXPERIMENT
3.1 Experimental setup
The study area includes the entire city of Nagoya, Japan. The data
used for the embeddings is a GPS dataset collected from an app
installed on users’ smartphones, provided by BlogWatcher Co.[1]
with prior consent. The experiments used stay data from Nagoya
City from 2023/01/01 to 2023/12/31. Additionally, to verify area
changes, we obtained information on store openings and closures
from a survey website [2]. This data includes the category of opened
or closed stores, event dates, latitude, and longitude. It is inferred
that trends in the target area changed during the periods before
and after these events.

3.2 Transformation of area shapes
Here, we experiment with transforming 50m, 250m, and 1km grids
to parent grids using Equation (3) and converting between districts
and 50m grids using Equation (5). We embed the area shapes before
and after transformation simultaneously with Area2Vec and eval-
uate the effectiveness by comparing the embeddings transformed
by the proposed method with the actual learned embeddings. The

Table 1: Metrics of area shape transformation.

MED MCS 6 cluster
Accuracy

12 cluster
Accuracy

50m grid
→ 250m grid 1.1562 0.9427 0.8174 0.7543

250m grid
→ 1km grid 0.5172 0.9842 0.8886 0.8727

50m grid
→ district 1.1680 0.9296 0.7933 0.7370

district
→ 50m grid 1.8386 0.8674 0.7187 0.6422

metrics are the Mean Euclidean Distance (MED) and Mean Cosine
Similarity (MCS), which calculate and average the distance between
two embeddings based on [13], as well as Accuracy, which indicates
the proportion of times the two embeddings belong to the same
cluster. The results are shown in Table 1.

Table 1 shows that the accuracy of the grid size transformation
improves from 250m to 1km compared to 50m to 250m. The re-
sults also indicate that the 50m -> district transformation is more
accurate than district -> 50m. This is likely because larger areas
have more data associated with each embedding, resulting in more
definitive embeddings. Additionally, according to Naito et al[8].,
the embeddings of polysemous words tend to have smaller norms
and cluster near the origin, as they represent averages of the em-
beddings of their meanings. Larger areas encompass more diverse
trends, leading to more averaged embeddings, which is why𝑀𝐸𝐷

of 250m -> 50m is extremely small.

3.3 Search for areas with changing trends
First, to identify areas where trends have changed, we obtained the
months and grids where new constructions occurred in Nagoya
City in 2023 from [2]. As a result, we identified 509 combinations of
50m grids and months where new buildings were constructed. For
these 509 events, we collected stay data for the month before and
the month after the event, resulting in 𝑑𝑏𝑒 𝑓 and 𝑑𝑎𝑓 𝑡 . We calculated
the difference in the frequency of the 168-dimensional stay tokens
between 𝑑𝑏𝑒𝑓 and 𝑑𝑎𝑓 𝑡 , aggregating the increasing tokens as 𝑑𝑝𝑜𝑠
and the decreasing tokens as 𝑑𝑛𝑒𝑔 . We then mixed the 𝑑𝑝𝑜𝑠 and
𝑑𝑛𝑒𝑔 obtained from each of the 509 events with the 50m grid data
corresponding to each month of 2023 and embedded them together.
For each area where an event occurred, we designated the embed-
ding for the month after the event as 𝑣𝑎𝑓 𝑡 and the embedding for
the month before the event as 𝑣𝑏𝑒 𝑓 and verified Equation (10). The
results are shown in Table 2.

In the experiment, we compared Equation (10) with cases where
either 𝑣𝑝𝑜𝑠 or 𝑣𝑛𝑒𝑔 was excluded. The results showed that the post-
event embedding was closer to the embedding obtained by consid-
ering both 𝑣𝑝𝑜𝑠 and 𝑣𝑛𝑒𝑔 rather than just one of them. This confirms
the validity of Equation (10).

Finally, using Equation (9), we search for areas with specific trend
changes. We first extracted the trend changes caused by two events,
"taverns opened(+taverns)" and "workplaces built(+workplaces)," as
search queries from the [2] dataset. Using the embeddings of these
𝑑𝑝𝑜𝑠 and 𝑑𝑛𝑒𝑔 and their combinations, we searched all 50m grids in
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Table 2: Metrics of temporal additive compositionality.

MED MCS 6 cluster
Accuracy

12 cluster
Accuracy

aft = bef
+ pos - neg

(Equation (10))
0.9852 0.6951 0.9150 0.8664

aft
= bef + pos 0.9518 1.2532 0.8219 0.7146

aft
= bef - neg 0.9027 2.1568 0.7357 0.6434

aft
= bef 0.8597 2.1962 0.6856 0.5578

weekday weekend

+ taverns

− taverns

+ taverns − workplaces 

pos

neg

pos

neg

pos

neg

Figure 2: Search results for each query (100 areas)

Nagoya City in 2023 for grids with similar changes from one month
to the next. Figure 2 shows the aggregated results of searching for
100 specific combinations of grids and months for each query.

Figure 2 shows that we can search not only for positive trend
change queries (+ taverns) but also for negative trend changes (-
taverns) by applying a negative factor. Additionally, by combining
these queries (+ taverns - workplaces), we can identify areas where
specific increases and decreases in trends occurred simultaneously.
This demonstrates that by using the additive compositionality of
area embeddings, we can search for both positive and negative
trend changes. This demonstrates the ability to search for areas
with specific trend changes from among numerous areas.

4 CONCLUSION
In this paper, we verified the additive compositionality of area
embeddings and evaluated it through experiments involving two
practical tasks. The results demonstrated that while it is limited
to shape transformations from fine-grained to coarse-grained ar-
eas, it is feasible and can be used to search for areas with specific

directional changes over time. We conducted experiments using
Area2Vec, which embeds stay information with a Word2Vec-based
architecture. However, as suggested by [8], additive compositional-
ity may also hold for Attention-based embedding methods such as
BERT. In future work, we aim to explore the additive composition-
ality in various area embedding methods, including BERT-based
and AutoEncoder-based methods, and investigate the potential
applications of our approach.
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