
Efficient Edge AI based Annotation and Detection
Framework for Logistics Warehouses

Yuki Mori
Nagoya University, Japan

ymori@ucl.nuee.nagoya-u.ac.jp

Yusuke Asai
Nagoya University, Japan

asayu@ucl.nuee.nagoya-u.ac.jp

Kesuke Higashiura
Nagoya University, Japan

urachan@ucl.nuee.nagoya-u.ac.jp

Shin Katayama
Nagoya University, Japan

shinsan@ucl.nuee.nagoya-u.ac.jp

Kenta Urano
Nagoya University, Japan

vrano@ucl.nuee.nagoya-u.ac.jp

Takuro Yonezawa
Nagoya University, Japan

takuro@nagoya-u.jp

Nobuo Kawaguchi
Nagoya University, Japan

kawaguti@nagoya-u.jp

Abstract—As global logistics demand increases, improving
the efficiency of warehouse operations has become critical. To
achieve this, it’s crucial to identify inefficient tasks and layouts
by recognizing various warehouse conditions. To address these
challenges, we’ve constructed a large-scale camera infrastructure
to convert object positions and movements into data. However,
transmitting all video data to the cloud results in significant
data transmission and power consumption. Edge AI cameras
analyze and extract video data locally, transmitting only essential
information and significantly reducing them. Edge AI cameras
require a low-computation, high-accuracy object detection model
due to limited computational power and complex warehouse
environments. Furthermore, the same object appears differently
based on the camera’s position and angle. Therefore, customizing
models for each camera improves accuracy, but the annotation
cost would be very high. In this study, we propose a method
to perform part of the training data generation on the camera,
reducing data transmission and improving annotation efficiency.

Index Terms—edge, annotation, AI, warehouse, labeling

I. INTRODUCTION

As electronic commerce (EC) grows, logistics warehouse
spaces are expanding. As a result, workloads are increasing,
making it crucial to improve operational efficiency. Among the
various approaches being explored to enhance this efficiency,
a digital twin, a virtual model that simulates real-world envi-
ronments for cost-effective improvements, has attracted much
attention [1]. However, constructing a digital twin requires
precise digitization of physical spaces through sensing and
data extraction.

To track the positions and movements of objects, installing
cameras is an effective method. We have installed over 60 cam-
eras in the warehouse, collecting about 1.2 TB of data daily. As
warehouse space continues to expand, reducing transmission
volume and power consumption becomes an important issue.
Edge processing has been attracting attention as a method
that addresses this issue [2], [3]. Edge AI cameras analyze
and extract data from captured video, and then transmit only
the necessary information. However, they face constraints
such as limited computational capacity. Moreover, given the
complex environment of a warehouse and a variability in
object appearances due to camera angles, a highly accurate
yet low-computation object detection model is essential. To

address this, we focus on developing tailored models for each
camera by preparing camera-specific datasets, although this
approach increases data collection and annotation costs.

In this study, we propose a method to perform part of
training data generation on the camera to reduce data trans-
mission and storage usage and improve annotation efficiency
by automating segmentation and batch labeling.

The contributions of this study are as follows:
• Proposing an efficient annotation and detection frame-

work tailored to each Edge AI camera in the warehouse.
• Achieving over 93% reduction in data transmission and

storage usage during the annotation process.
• Training object detection models for edge AI cameras,

resulting in over 92% efficiency gains in annotation.

II. RELATEDWORK

We have been working on improving annotation efficiency
for constructing a digital twin of a logistics warehouse. Hi-
gashiura and Kano et al. [4], [5] proposed a framework that
can significantly reduce annotation time in the warehouse envi-
ronment. However, it targets only dynamic objects like people
and is unsuitable for static ones like pallets. Furthermore, the
method is not designed for edge AI cameras, which is the goal
of this study, and does not take into account the amount of
transmission and power consumption.

Object detection and tracking algorithms using edge AI
cameras have been studied [6]–[8], primarily targeting objects
in everyday environments where open-source datasets are suf-
ficient. In contrast, a warehouse environment, which contains a
wide variety of objects, requires custom datasets tailored to its
complexity. Moreover, when using multiple edge AI cameras,
creating individual training datasets for each camera lead to
achieve high accuracy but involves significant labor and cost.
To the best of our knowledge, there has been no research on
how to create training datasets for such edge AI cameras.

III. ENVIRONMENT

We conduct research focusing on the logistics warehouse
located in Aichi, Japan. We have constructed a large-scale
camera infrastructure with over 60 cameras, as shown in Fig.1.



Fig. 1: Large-scale camera infrastructure [3]

The camera is HV-800G2A5 manufactured by H.View. There
are two types of cameras: one captures the floor surface from
directly above, and the other provides a bird’s-eye view. They
are installed in various locations, such as truck berth and
elevators. This study focuses on the first type. The video is
Full HD at 5 fps. OAK-D-Pro W PoE from Luxonis was used
as an edge AI camera. It is equipped with Intel’s Movidius
Myriad VPU, which enables it to run neural networks.

IV. METHOD

The framework for creating training datasets proposed in
this study is shown in Fig.2. The framework consists of
four main processes: moving object detection, segmentation,
clustering, and labeling.

A. Moving Object Detection

Dynamic and static objects are detected in the input video.
Since this processing is performed by the edge AI camera,
this detection is performed using sparse optical flows that are
computationally less demanding, as shown in Fig.3a. Initially,
we employ Shi-Tomasi corner detection [9] to identify feature
points in the frames. Subsequently, using optical flow [10],
the points are classified as dynamic objects if they move more
than 15 pixels between two frames. On the other hand, static
objects are identified by points that were previously dynamic
but have stopped moving. They are also identified by points
in the storage area, which includes spaces for storing and
inspecting goods but excludes floor pathways, that are not
classified as dynamic.

B. Segmentation

Feature points recognized as dynamic or static objects are
segmented using NanoSam [11]. NanoSam, a streamlined
version of the Segment Anything Model (SAM) [12], operates
in real-time and performs computations directly on the edge
AI camera. To prepare inputs for the NanoSam model, we set
the frame resolution to 1024x1024, adding padding equally
to the top and bottom to preserve the original aspect ratio.
Segmentation is then applied to the recognized feature points.
Fig.3b shows an example of the output. The contours are
then extracted from the segmentation data using OpenCV’s
findContours function. To reduce the amount of transmission
and storage, we apply several constraints. Segmentation results
with an area less than 0.5% of the entire image are removed
as noise. Additionally, objects with an aspect ratio larger than
4:1 are removed because they are too long and narrow. When

multiple feature points on an object are recognized as dynamic
or static, several segmentation results are produced. If these
segmentation results overlap by more than 30%, they are
merged into a single result. When a feature point recognized
as a static object is segmented in every frame, the static object
and the feature point remain unchanged, causing the same
data to be sent multiple times. To avoid this, feature points
identified as static objects are stored in a list, and segmentation
is only performed when the contents of the list change. When
the data is transferred to the server, information about the
static object is added, and only the segmented data is used
in the subsequent clustering and labeling processes. Finally,
we add the labeled static object data to all appropriate frame
data before training an object detection model. With the above
approach, only the necessary data is extracted and transferred
to the server, reducing the amount of transmission and storage.

C. Clustering

We adopt the most accurate combination of the methods
proposed in our previous research [4]. Specifically, we use
SimSiam [13] to encode features of object images obtained
through segmentation. Subsequently, dimensionality reduction
is performed using UMAP [14], followed by the clustering of
similar objects into the same clusters using K-means.

D. Labeling

We use a custom labeling tool that displays clusters in order
and assign appropriate labels to each, as shown in Fig.4. It
is also possible to label each image individually. Basically,
each cluster is labeled as a whole, and if an image is clearly
inappropriate, a suitable label can be assigned.

V. EVALUATION

To validate the effectiveness of our method, an evaluation
experiment was conducted.

A. Method for Comparison

The comparison method in this study is manual annota-
tion, which entails surrounding each object with a bbox and
assigning a label. Although various models and techniques
for annotation have been proposed, constructing a tool that
can serve as a baseline for comparison remains challenging.
Therefore, we use manual annotation for comparison.

B. Evaluation Metrics

Two evaluation metrics are defined to evaluate our method:
annotation efficiency and object detection accuracy. Anno-
tation efficiency is measured by the number of annotations
performed per minute. For our approach, we record the time
required for labeling, whereas manual annotation measures
the time needed to enclose the target object with a bbox
and label it. Object detection accuracy measures the quality
of the annotations. In general, the higher the quality of the
training data, the higher the accuracy of object detection
models. Therefore, in this paper, we train an object detection
model using the dataset annotated with our method and manual
annotation method and use the detection accuracy of the object



Fig. 2: The framework of this study

(a) Sparse optical flow (b) Segmentation

Fig. 3: Example output

Fig. 4: Custom labeling tool

detection models as the annotation accuracy. We use Average
Precision (AP) as the metric for object detection accuracy. AP
is evaluated on a scale from 0 to 100 as a percentage, with
higher AP indicating better accuracy. IoU (Intersection over
Union) indicates the degree of overlap between the predicted
bbox and the bbox of the correct data, and AP50 is the AP
value when IoU is 0.5 or higher.

C. Detail of Experiment
1) Data used: We used existing video data recorded by one

camera over 6 days. These videos were saved as separate files
every 30 minutes. We reviewed all the video files and selected
22 hours of footage featuring frequent occurrences of pallets
(few items) and pallets (stacked) as shown in Fig.5.

2) Dataset Creation for Our Method: The evaluation ex-
periment followed the process shown in Fig.2. Ideally, the ex-
periment should be conducted using real-time camera footage,
but to reduce setup costs, we sent pre-recorded videos to the
AI processor of the edge AI camera for evaluation.

First, sparse optical flow was used to detect the positions of
objects in the video, with a maximum of 480 feature points

(a) pallet (few items) (b) pallet (stacked)

Fig. 5: Evaluation objects in this study

employed. Next, segmentation masks were generated for these
feature points. Segmentation was only performed every 5
frames, as consecutive frames are similar and have minimal
impact on training outcomes. The contours were then extracted
from the generated mask images. Based on the contour infor-
mation, each instance was separated, and 2048 dimensional
image embeddings were generated. The hyperparameters and
training model for SimSiam were implemented based on the
official releases. The 2048 dimensional embeddings were then
compressed to 512 dimensions. These compressed embeddings
were clustered, classifying the data collected from a single
video file into 100 clusters. Finally, labeling was performed. To
calculate the annotation time, a stopwatch was used to measure
the time taken for labeling. Ultimately, 29,006 annotations
were made across 21 categories. Of these, 2,437 annotations
were labeled as pallet (few items) and 400 as pallet (stacked).

3) Dataset Creation for Manual Annotation: We manually
enclosed each pallet (few items) and pallet (stacked) in the
warehouse videos with a bbox and labeled them. These manual
annotations were performed by the author and an annotator
who regularly engages in such tasks. As with our method,
annotations were performed on 2,437 pallets (few items) and
400 pallets (stacked). To calculate the annotation time, a
stopwatch was used to measure the time taken for annotations.

4) Creation of the Evaluation Dataset: To assess object
detection accuracy, we created an evaluation dataset using
manual annotation from 4 days of video data, distinct from
those used for the training dataset. From these video data, we
annotated 344 pallets (few items) and 74 pallets (stacked).

5) Training Object Detection Model and Calculating AP:
Object detection models were trained using the datasets cre-
ated in SectionV-C2 and V-C3. Using the evaluation dataset



TABLE I: Annotation Efficiency Results

Method number of annotations per minute
Our Method 93.28

Manual Annotation 5.21

TABLE II: Accuracy Results of the Object Detection Model

Dataset Average Precision (%)
Our Method 65.1

Manual Annotation 78.4

created in V-C4, we calculated AP50 and evaluated the accu-
racy of the datasets created by our method and manual anno-
tation. In this experiment, we used YOLOv8n [15], trained for
500 epochs with a 640×640 input size and default settings, as
the object detection model.

D. Results and Discussion

Table.I presents annotations per minute and Table.II shows
AP50 for both our method and manual annotation.

Our method was slightly less accurate than manual anno-
tation. The main reason for this is that when objects such as
cardboard overlap, segmentation is not successful, and poor
quality annotations are mixed in. For example, as shown in
Fig.6, the right pallet is affected by cardboard, resulting in
poorer annotation accuracy compared to manual annotation. To
improve segmentation, the method combined with background
subtraction can be considered. Additionally, the method using
sparse optical flow might have missed detecting objects that
should have been identified, and improperly clustered objects
could lead to incorrect labeling.

The annotation efficiency improved by more than 92%,
significantly reducing costs. This improvement is primarily
due to the automated segmentation and batch labeling.

Our method, designed for edge AI cameras with limited
computational capacity, performed moving object detection
and segmentation, transmitting only essential data. In this
evaluation experiment, out of the total 392,250 frames, only
24,649 were extracted by the edge AI camera and used on the
server, reducing data transmission volume by more than 93%.
It is possible to reduce this further during periods with less
human activity or depending on the camera’s viewpoint.

VI. SUMMARY

In this paper, we proposed an efficient annotation method
for object detection modeling in edge Al architecture. Our
method automates segmentation, labels multiple data sets
together, and improves annotation efficiency in a warehouse
environment. In addition, our method segments objects within
the edge AI camera, transmitting only the necessary data to the
server. This approach reduces data transmission and storage
requirements during the annotation process. As a result, our
method improved annotation efficiency by over 92%, despite
slightly lower accuracy compared to manual annotation.

ACKNOWLEDGMENT

This work is partially supported by JSPS KAKENHI
(JP22K18422), NEDO (JPNP23003), NICT (222C01, 22609),

(a) Manual Annotation (b) Our Method

Fig. 6: Difference in annotation quality

and CSTI SIP3 (JPJ012495). We also thank TRUSCO
Nakayama Corporation for providing the experimental envi-
ronment.

REFERENCES

[1] B. R. Barricelli, E. Casiraghi, and D. Fogli, “A survey on digital twin:
Definitions, characteristics, applications, and design implications,” IEEE
Access, vol. 7, pp. 167 653–167 671, 2019.

[2] H. Hua, Y. Li, T. Wang, N. Dong, W. Li, and J. Cao, “Edge comput-
ing with artificial intelligence: A machine learning perspective,” ACM
Computing Surveys, vol. 55, no. 9, pp. 1–35, 2023.

[3] Y. Asai, Y. Mori, K. Higashiura, K. Yokoyama, S. Katayama, K. Urano,
T. Yonezawa, and N. Kawaguchi, “Towards a real-time and energy-
efficient edge ai camera architecture in mega warehouse environment,”
in 2024 IEEE 3rd Real-Time and Intelligent Edge Computing Workshop
(RAGE), 2024, pp. 1–6.

[4] K. Higashiura, K. Yokoyama, Y. Asai, H. Shimosato, K. Kano,
S. Katayama, K. Urano, T. Yonezawa, and N. Kawaguchi, “Semi-
automated framework for digitalizing multi-product warehouses with
large scale camera arrays,” in 2024 IEEE International Conference on
Pervasive Computing and Communications (PerCom), 2024, pp. 98–105.

[5] K. Kano, Y. Mori, K. Higashiura, T. Hossain, S. Katayama, K. Urano,
T. Yonezawa, and N. Kawaguchi, “Composite image generation using
labeled segments for pattern-rich dataset without unannotated target,”
in Companion of the 2024 on ACM International Joint Conference on
Pervasive and Ubiquitous Computing, 2024, pp. 507–512.

[6] H. F. Yang, J. Cai, C. Liu, R. Ke, and Y. Wang, “Cooperative multi-
camera vehicle tracking and traffic surveillance with edge artificial
intelligence and representation learning,” Transportation research part
C: emerging technologies, vol. 148, p. 103982, 2023.

[7] M. I. Zaman, U. I. Bajwa, G. Saleem, and R. H. Raza, “A robust deep
networks based multi-object multi-camera tracking system for city scale
traffic,” Multimedia Tools and Applications, vol. 83, no. 6, pp. 17 163–
17 181, 2024.

[8] V. Mazzia, A. Khaliq, F. Salvetti, and M. Chiaberge, “Real-time apple
detection system using embedded systems with hardware accelerators:
An edge ai application,” IEEE Access, vol. 8, pp. 9102–9114, 2020.

[9] J. Shi et al., “Good features to track,” in 1994 Proceedings of IEEE
conference on computer vision and pattern recognition, 1994, pp. 593–
600.

[10] B. D. Lucas and T. Kanade, “An iterative image registration technique
with an application to stereo vision,” vol. 2, pp. 674–679, 1981.

[11] NanoSam : accessed 2024-02-22, https://github.com/NVIDIA-AI-
IOT/nanosam.

[12] A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson,
T. Xiao, S. Whitehead, A. C. Berg, W.-Y. Lo et al., “Segment anything,”
in Proceedings of the IEEE/CVF International Conference on Computer
Vision, 2023, pp. 4015–4026.

[13] X. Chen and K. He, “Exploring simple siamese representation learning,”
in Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, 2021, pp. 15 750–15 758.

[14] L. McInnes, J. Healy, and J. Melville, “Umap: Uniform manifold
approximation and projection for dimension reduction,” arXiv preprint
arXiv:1802.03426, 2018.

[15] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2016, pp. 779–
788.


